www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - stammfunktion finden
stammfunktion finden < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stammfunktion finden: korrektur
Status: (Frage) beantwortet Status 
Datum: 23:08 Mi 07.05.2008
Autor: ella87

Aufgabe
[mm]\integral_{0}^{2\pi}{\bruch{i}{re^{it}-1} dt}[/mm]

das ist nicht die eigentiche aufgabe sondern das ergebnis bei dem ich jetzt bin.
frage: wie bilde ich die stammfunktion? hab da irgedwie nen fehler drin glaub ich:
[mm]\integral_{0}^{2\pi}{\bruch{i}{re^{it}} dt}-\integral_{0}^{2\pi}{i dt}[/mm]
wenn das noch stimmt, dann kommt jetzt vermutlich der fehler....
[mm]-\bruch{1}{r}e^{-it}[/mm] als stammfunktion des 1.integrals und [mm]it[/mm] des 2.

wo liegt der fehler??? weil wenn ich die grenzen einsetzte ist das ergebnis komisch. DANKE



        
Bezug
stammfunktion finden: Antwort
Status: (Antwort) fertig Status 
Datum: 23:32 Mi 07.05.2008
Autor: leduart

Hallo ella
[mm] \bruch{1}{a-b}\ne \bruch{1}{a}-\bruch{1}{b}!!!! [/mm]
Substitution Nenner=u hilft.
Gruss leduart

Bezug
                
Bezug
stammfunktion finden: korrektur
Status: (Frage) beantwortet Status 
Datum: 10:57 Do 08.05.2008
Autor: ella87

na klar! das war dumm!
also meine neue stammfunktion lautet:
[mm]i*ln(\bruch{r}{i}e^{it}-t)[/mm]
und damit komm ich dann auf
[mm]i*ln(\bruch{r}{i}e^{i2\pi}-2\pi)-i*ln(\bruch{r}{i}) = i*ln(\bruch{r}{i}(cos(2\pi)+isin(2\pi)-2\pi)-i*ln(\bruch{r}{i})=i*ln(\bruch{r}{i}-2\pi)-i*ln(\bruch{r}{i})=i*[ln(\bruch{\bruch{r}{i}-2\pi}{\bruch{r}{i}}]=i*[ln(1-\bruch{2\pi i}{r})][/mm]
wie kann man das noch vereinfachen bzw was ist dann das ergebnis? ich weiß nicht mehr weiter!

Bezug
                        
Bezug
stammfunktion finden: Antwort
Status: (Antwort) fertig Status 
Datum: 13:03 Do 08.05.2008
Autor: leduart

Hallo
Wie kommst du auf die Stammfunktion? sie ist falsch, wie du leicht durch Differenzieren (mit Kettenregel) fesstellen kannst.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de