www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - stationäre Punkte finden
stationäre Punkte finden < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stationäre Punkte finden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:18 Fr 30.01.2009
Autor: Englein89

Hallo,

ich habe die Funktion

[mm] f(x,y)=\wurzel{x^2+y^2} [/mm]

Frage 1) Wie komme ich auf die Ableitung? Ignoriere ich [mm] y^2 [/mm] dabei einfach?

Das Ergebnis ist ja, dass ich x durch [mm] \wurzel{x^2+y^2} [/mm] habe

Frage 2) Wie komme ich bei der Ableitung dann auf Nullstellen? Die Wurzel darf ja nie negativ werden, sage ich dann einfach es gibt keine stationären Punkte für f? Aber angeblich hat die FUnktion ein Minimum in 0,0.


        
Bezug
stationäre Punkte finden: ableiten
Status: (Antwort) fertig Status 
Datum: 17:24 Fr 30.01.2009
Autor: Loddar

Hallo Englein!


Es gilt hier gemäß MBKettenregel:
[mm] $$f_x(x,y) [/mm] \ = \ [mm] \bruch{2x}{2*\wurzel{x^2+y^2}} [/mm] \ = \ [mm] \bruch{x}{\wurzel{x^2+y^2}}$$ [/mm]
Das sollte dann auch die weiteren Fragen (vorerst) klären.


Gruß
Loddar


Bezug
                
Bezug
stationäre Punkte finden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:29 Fr 30.01.2009
Autor: Englein89

Danke, aber ich komme irgendwie trotzdem noch nicht darauf :/

Ich kann doch schreiben

[mm] (x^2+y^2)^{-1/2} [/mm]

Dann hole ich die -1/2 nach vorne und mach den Exponenten um 1 kleiner:

[mm] -1/2(x^2+y^2)^{-3/2}*2x. [/mm] Aber wie komme ich jetzt auf den Bruch? Das kann ja nicht richtig sein.


Bezug
                        
Bezug
stationäre Punkte finden: Wurzel
Status: (Antwort) fertig Status 
Datum: 17:33 Fr 30.01.2009
Autor: Loddar

Hallo Englein!


Es gilt:
[mm] $$\wurzel{( \ ... \ )} [/mm] \ = \ ( \ ... \ [mm] )^{\red{+} \bruch{1}{2}}$$ [/mm]

Gruß
Loddar


Bezug
                                
Bezug
stationäre Punkte finden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:47 Fr 30.01.2009
Autor: Englein89

Ja, stimmt, du hast Recht.

Aber wie kommst du auf die 2 im Zähler? Ich habe ja dann im Exponenten doch 3/2, oder nicht? Wo ist die 3 hin?

Bezug
                                        
Bezug
stationäre Punkte finden: Welche 3 ?
Status: (Antwort) fertig Status 
Datum: 17:50 Fr 30.01.2009
Autor: Loddar

Hallo Englein!


Von welcher 3 redest Du? Es ergibt sich für die Ableitung von [mm] $(...)^{\bruch{1}{2}}$ [/mm] keinerlei 3.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de