stationärer Punkt < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 13:29 Mi 10.12.2008 | Autor: | Irmchen |
Guten Morgen alle zusammen!
Ich habe hier einen Satz, und habe Probleme den eigentlich recht einfachen Beweis zu verstehen... Hauptsächlich liegen meine Probleme in der Notation, da ich irgendwie Probleme mit den Begriff des Gradienten habe :-(.
Satz :
Sei f auf einer offenen Menge [mm] D \subset \mathbb R^n [/mm] einmal stetig differenzierbar, [mm] f \in C^1 (D) [/mm], und [mm] x^{ \* } \in D [/mm] ein lokales Minimum von f.
Dann ist [mm] x^{ \* } [/mm] ein stationärer Punkt von f , [mm] \nabla f( x^{ \* } ) = 0 [/mm].
Falls f darüber hinaus zweimal stetig differenzierbar ist, [mm] f \in C^2 ( D ) [/mm], ist die Hessematrix [mm] \nabla^2 f ( x^{ \* } ) [/mm] positiv semidefinit.
Beweis :
Sei zunächst [mm] f \in C^1 (D) [/mm] und [mm] x^{ \* } \in D [/mm] ein
lokales Minimum von f.
Die Funktion [mm] \phi (t) := f ( x^{ \* } - t \nabla f( x^{ \*} ) ) [/mm] ist dann für kleines [mm] | t | , t \in \mathbb R [/mm] stetig differenzierbar
( Gilt das wegen der Eigenschaft des Minimums? Was passiert denn genau in der Klammer von [mm] f ( x^{ \* } - t \nabla f( x^{ \*} ) ) [/mm] , warum benutzt man den Gradienten? )
und es gilt
[mm] \phi ' (0 ) = - Df ( x^{\*} ) \nabla f ( x^{\*} ) = - \| \nabla f ( x^{\*} ) \|_{2}^{2} [/mm]
Ich sehe leider nicht, warum [mm] - Df ( x^{\*} ) \nabla f ( x^{\*} ) = - \| \nabla f ( x^{\*} ) \|_{2}^{2} [/mm] gilt
so, dass [mm] \phi' (0) < 0 [/mm] falls [mm] \nabla f( x^{ \*} ) \ne 0 [/mm].
Dann ist [mm] \phi ( \epsilon ) < \phi (0) [/mm] für kleines [mm] \epsilon < 0 [/mm] so dass [mm] x^{\*} [/mm] kein lokales Minimum von f sein kann.
Warum gilt diese Folgerung und ich verstehe einfach nicht die Bedeutung der konstruierten Funktion [mm] \phi [/mm] .
Sei nun zusätzlich [mm] f \in C^2 (D) [/mm]. Wäre [mm] \nabla ^2 f (x^{\*} ) [/mm] nicht positiv semidefinit, so gäbe es einen Vektor [mm] d \in \mathbb R^n, d \ne 0 [/mm], mit [mm] d^T \nabla^2 f( x^{\*} ) d < 0 [/mm].
Aus dem Satz von Taylor folgt dann für kleines [mm] t > 0 [/mm] wegen [mm] Df(x^{\*}) = 0 [/mm] die Existenz eines [mm] \tau \in ( 0,t ) [/mm]
mit
[mm] f ( x^{\*} - td ) = f(x^{\*} ) + \bruch{1}{2} t^2 d^T \nabla^2 f( x^{\*} - \tau d ) d [/mm]
Wie kommt der zweite Term rechts vom Gleichheitszeichen, sprich [mm] \bruch{1}{2} t^2 d^T \nabla^2 f( x^{\*} - \tau d ) d [/mm]
zustande ?
Für hinreichend kleines t folgt aus der Stetigkeit von [mm] \nabla^2 f( x^{\*} ) [/mm] wieder [mm] f ( x^{\*} - td ) < f ( x^{\*} ) [/mm] und diese
ist ein Widerspruch zum lokalen Minimum!
Ich hoffe, dass mir jemand dabei behilflich sein kann, diesen Beweis vollkommen zu verstehen....
Vielen Dank schon mal für die Mühe!
Viele Grüße
Irmchen
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:20 Do 18.12.2008 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|