www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Steckbriefaufgaben" - steckbriefaufgabe
steckbriefaufgabe < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

steckbriefaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:39 Mo 08.03.2010
Autor: frank1968

Aufgabe
der graph einer ganzrationalen funktion dritten grades berührt die x-achse an der stelle 4 und hat an der stelle 8/3(bruch)  eine wendestelle.
die wendetangente hat die steigung -4/3(bruch) .ermitteln sie den funktionsterm.

mein sohn hat diese aufgabe auf der kann mir da weiterhelfen....
würd sie gerne korrigieren.... falls er was falsch gemacht hat


ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
steckbriefaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 15:46 Mo 08.03.2010
Autor: fred97

Die gesuchte Funktion hat die Gestalt:  $f(x) = [mm] ax^3+bx^2+cx+d$ [/mm]

        " .... berührt die x-achse an der stelle 4" liefert

        (1) f(4) =0

und
        (2) f'(4) = 0    

         " .... an der stelle 8/3(bruch)  eine wendestelle" liefert

        (3) f''(8/3) = 0

        
          " ..... wendetangente hat die steigung -4/3(bruch)" liefert

        (4) f'(8/3) = -4/3

Aus (1) bis (4) erhält man ein lineares Gleichungssystem für die Unbekannten a,b,c und d

FRED





Bezug
                
Bezug
steckbriefaufgabe: rückfrage
Status: (Frage) beantwortet Status 
Datum: 15:54 Mo 08.03.2010
Autor: frank1968

schonmal danke für die antwort nur wie macht man dann weiter?

Bezug
                        
Bezug
steckbriefaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 16:00 Mo 08.03.2010
Autor: schachuzipus

Hallo,

> schonmal danke für die antwort nur wie macht man dann
> weiter?

erstmal bist du (oder dein Filius) dran, die Tipps von Fred umzusetzen.

Berechnet die nötigen Ableitungen, setzt alles gem. Freds Gleichungen ein und ihr bekommt das lineare Gleichungssystem mit 4 Gleichungen in den 4 Unbekannten $a,b,c,d$

Das gilt es dann mit den üblichen Mitteln zu lösen.

Was immer dein Sohn kennengelernt hat, darf er benutzen.

Additionsverfahren, Substitutionsverfahren oder eleganter in Matrixschreibweise lösen.

Nun legt ihr mal nach ...

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de