www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - stetige funktion
stetige funktion < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stetige funktion: Tipp
Status: (Frage) beantwortet Status 
Datum: 12:02 Do 04.12.2014
Autor: gogogo125

Für eine stetige Funktion f: [mm] [a,b]\to\IR [/mm] seien m und M Minimum und Maximum
von f auf [a,b]. Zeigen Sie:
f([a,b]) = [m,M]

Ich verstehe leider nicht so richtig was ich hier machen soll :-(
Also wir haben für die funktion f([a,b]) schon zwei mögliche ergebnisse gegeben m und M und diese ergebnisse sollen auch noch das maximale bzw. minimale ergebnis im bildbereich der funktion seien.

wenn man jetzt den zwischenwertsatz anwendet, sagt dieser, dass auch alle werte zwischen m und M getroffen werden, also wird das ganze interval [m,M] getroffen und f([a,b]) = [m,M]

aber was muss ich da jetzt noch zeigen, damit das mathematisch korrekt ist?
mfg Andreas

        
Bezug
stetige funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:13 Do 04.12.2014
Autor: fred97


> Für eine stetige Funktion f: [mm][a,b]\to\IR[/mm] seien m und M
> Minimum und Maximum
>  von f auf [a,b]. Zeigen Sie:
>  f([a,b]) = [m,M]
>  
> Ich verstehe leider nicht so richtig was ich hier machen
> soll :-(
>  Also wir haben für die funktion f([a,b])

f([a,b]) ist keine Funktion, sondern

   [mm] $f([a,b])=\{f(x):x \in [a,b]\}$ [/mm]



>  schon zwei
> mögliche ergebnisse gegeben m und M und diese ergebnisse
> sollen auch noch das maximale bzw. minimale ergebnis im
> bildbereich der funktion seien.
>  
> wenn man jetzt den zwischenwertsatz anwendet, sagt dieser,
> dass auch alle werte zwischen m und M getroffen werden,
> also wird das ganze interval [m,M] getroffen und f([a,b]) =
> [m,M]
>  
> aber was muss ich da jetzt noch zeigen, damit das
> mathematisch korrekt ist?

Im Wesentlichen hast Du es schon. Ist [mm] y_0 \in [/mm] [m,M], so ex. nach dem Zwischenwertsatz ein [mm] x_0 \in [/mm] [a,b] mit

  [mm] f(x_0)=y_0. [/mm]

Damit ist [mm] y_0 \in [/mm] f([a,b]).

Also [m,M] [mm] \subseteq [/mm] f([a,b])

Klar dürfte sein: [m,M] [mm] \supseteq [/mm] f([a,b])

FRED

>  mfg Andreas


Bezug
                
Bezug
stetige funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:49 Do 04.12.2014
Autor: gogogo125

ok, ich hab das jetzt nochmal als lösung formuliet. ist das so korrekt?

[mm] f([a,b])=\{f(x):x \in [a,b]\} [/mm]

wir kennen jetzt schon zwei Elemente aus f([a,b]) m, M die auch das größte y=f(x) und kleinste y=f(x) darstellen.

Ist  [mm] y_0 \in [/mm]  [m,M], so ex. nach dem Zwischenwertsatz ein  [mm] x_0 \in [/mm]  [a,b] mit
[mm] f(x_0)=y_0. [/mm]

Damit ist [mm] y_0 \in [/mm] f([a,b]).

Also [m,M] [mm] \subseteq [/mm] f([a,b])

Da m, M Minimum und Maximum von f([a,b]) sind, ist klar das

[m,M] [mm] \supseteq [/mm] f([a,b])

Also gilt f([a,b]) = [m,M] q.e.d.



Bezug
                        
Bezug
stetige funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:57 Do 04.12.2014
Autor: fred97


> ok, ich hab das jetzt nochmal als lösung formuliet. ist
> das so korrekt?
>  
> [mm]f([a,b])=\{f(x):x \in [a,b]\}[/mm]
>
> wir kennen jetzt schon zwei Elemente aus f([a,b]) m, M die
> auch das größte y=f(x) und kleinste y=f(x) darstellen.
>  
> Ist  [mm]y_0 \in[/mm]  [m,M], so ex. nach dem Zwischenwertsatz ein  
> [mm]x_0 \in[/mm]  [a,b] mit
>  [mm]f(x_0)=y_0.[/mm]
>  
> Damit ist [mm]y_0 \in[/mm] f([a,b]).
>  
> Also [m,M] [mm]\subseteq[/mm] f([a,b])
>
> Da m, M Minimum und Maximum von f([a,b]) sind, ist klar
> das
>  
> [m,M] [mm]\supseteq[/mm] f([a,b])
>  
> Also gilt f([a,b]) = [m,M] q.e.d.
>  
>  

Alles bestens

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de