www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - stochastische Konvergenz
stochastische Konvergenz < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stochastische Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:46 Di 15.12.2009
Autor: Irmchen

Guten Tag alle zusammen!

Ich beschäftige mich mit einem Lemma und dessen Beweis.

Lemma :

Für Zufallsvariablen [mm] Z_n \ : \ \Omega \to \mathbb R [/mm] gelte:

(i) [mm] E ( Z_n) \to \mu [/mm] für  [mm] n \to \infty \ , \ \mu \in \mathbb R [/mm]

(ii)  [mm] Var ( Z_n) \to 0 [/mm] für [mm] n \to \infty [/mm].

Dann gilt: [mm] P ( \{ \ | Z_n - \mu \ | \ge \epsilon \} ) \to 0 [/mm] für [mm] n \to \infty, \ \epsilon > 0 [/mm]

[   Frage : Also es ist zu zeigen, dass die Folge [mm] Z_n [/mm] stochstisch gegen 0 konvergiert, richtig? ]

Beweis :

Wähle zu gegebenen [mm] \epsilon > 0 [/mm] ein [mm] n_0 \in \mathbb N [/mm], so dass [mm] | \ E(Z_n) - \mu \ | \le \bruch{\epsilon}{2} \ \forall \ n \ge n_0 [/mm].

Aus der Dreiecksungleichung folgt für alle [mm] n \ge n_0 [/mm]:

(*)  [mm] \{ \omega \ : \ | Z_n (\omega) - \mu | \ge \epsilon \} \subset \{ \omega \ : \ | Z_n (\omega) - E(Z_n) | \ge \bruch{ \epsilon}{2} \} [/mm]

Für [mm] n \ge n_0 [/mm] gilt dann:

[mm] P( \{ | Z_n - \mu | \ge \epsilon \} ) \le P ( \{ | Z_n - E(Z_n) | \ge \bruch{ \epsilon}{2} \} ) \le \bruch{ Var (Z_n)}{ ( \bruch{ \epsilon}{2})^2 } [/mm]

[ Frage : Wie konstruiere ich diese Dreiecksungleichung, so dass aus ihr (*) folgt ? ]

Vielen Dank!

Viele Grüße
Irmchen


        
Bezug
stochastische Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 03:25 Do 17.12.2009
Autor: Turis

Hallo,

deine erste Frage würde ich mit "Ja" beantworten.

Zu der zweiten: Ich sehe grad nicht genau wieso, aber ich vermute gemeint ist diese Ungleichung:
[mm] |E(Z_{n}) [/mm] - [mm] \mu| [/mm] = [mm] |E(Z_{n}) [/mm] - [mm] Z_{n} [/mm] + [mm] Z_{n} [/mm] - [mm] \mu| \le |E(Z_{n}) [/mm] - [mm] Z_{n}| [/mm] + [mm] |Z_{n} [/mm] - [mm] \mu| [/mm]

Grüße

Bezug
                
Bezug
stochastische Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:35 Sa 19.12.2009
Autor: Irmchen

Guten Abend!

Als erstes Dankeschön  für die Antwort!
Diese Dreieicksungleichung habe ich auch betrachtet, jedoch sehe ich auch nicht, wie aus diese Ungleichung der Rest folgt...

Woher kommen z.B auch diese Abschätzungen
[mm] | \ E(Z_n) - Z_n \ | \ge \bruch{ \epsilon}{2} [/mm] und [mm] | \ Z_n - \mu \ | \ge \epsilon [/mm] ?

Vielen Dank!
Viele Grüße
Irmchen

Bezug
                        
Bezug
stochastische Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 00:14 So 20.12.2009
Autor: Turis

So, habs (glaub ich) raus:

Wir haben die falsche UGL angeschaut und vorallem: Es geht nicht darum diese Ungleichungen mit größer-gleich epsiolon irgendwie zu bekommen, sondern es geht lediglich um die Inklusion. Daher betrachte:


[mm] \varepsilon \le |Z_{n}(w)-\mu|=|Z_{n}(w)-E(Z_{n})+E(Z_{n})-\mu| [/mm]
[mm] \le |Z_{n}(w)-E(Z_{n})| [/mm] + [mm] |E(Z_{n})-\mu| [/mm]
[mm] \le |Z_{n}(w)-E(Z_{n})| [/mm] + [mm] \varepsilon/2 [/mm]

So bekommt man die Inklusion.

Die letzte Abschätzung bekommt dann natürlich mit Tschebychew. Das konvergiert dann gegen Null (wenn man z.b. [mm] \varepsilon^{3} [/mm] wählt bei [mm] V(Z_{n})->0)) [/mm] und der Beweis ist fertig.

Schöne Aufgabe :)

Grüße


Bezug
                                
Bezug
stochastische Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:08 So 20.12.2009
Autor: Irmchen

Vielen Dank für die Hilfe!

Viele Grüße
Irmchen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de