www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - strahlensatz
strahlensatz < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

strahlensatz: tipp
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:03 So 28.06.2015
Autor: nudidudi

Aufgabe
Gegeben seien zwei Geraden $g$ und $h$ (in [mm] $\IC$) [/mm] mit Schnittpunkt $P [mm] \in \IC$ [/mm] sowie zwei parallele
Geraden $k$ und $m$, die $g$ in den Punkten $A$ und $B$ sowie h in den Punkten $C$ und $D$ schneiden.

Zeigen sie:

1.strahlensatz

[mm] $\frac{|A-P|}{|C-P|}=\frac{|B-P|}{|D-P|}$ [/mm]

2.strahlensatz:

[mm] $\frac{|B-P|}{|A-P|}=\frac{|D-B|}{|C-A|}$ [/mm]

hi sorry dass ich keine Zeichung dazu legen kann!:/

desweitern hab ich keine Idee wie ich das angehen soll, also wie soll ich von

[mm] $\frac{|A-P|}{|C-P|}$ [/mm] zu [mm] $\frac{|B-P|}{|D-P|}$ [/mm] kommen ,das ist die frage:/

        
Bezug
strahlensatz: Anstöße...
Status: (Antwort) fertig Status 
Datum: 20:48 So 28.06.2015
Autor: Marcel

Hallo,

> Gegeben seien zwei Geraden [mm]g[/mm] und [mm]h[/mm] (in [mm]\IC[/mm]) mit
> Schnittpunkt [mm]P \in \IC[/mm] sowie zwei parallele
>  Geraden [mm]k[/mm] und [mm]m[/mm], die [mm]g[/mm] in den Punkten [mm]A[/mm] und [mm]B[/mm] sowie h in
> den Punkten [mm]C[/mm] und [mm]D[/mm] schneiden.
>  
> Zeigen sie:
>  
> 1.strahlensatz
>  
> [mm]\frac{|A-P|}{|C-P|}=\frac{|B-P|}{|D-P|}[/mm]
>  
> 2.strahlensatz:
>  
> [mm]\frac{|B-P|}{|A-P|}=\frac{|D-B|}{|C-A|}[/mm]
>  hi sorry dass ich keine Zeichung dazu legen kann!:/
>  
> desweitern hab ich keine Idee wie ich das angehen soll,
> also wie soll ich von
>  
> [mm]\frac{|A-P|}{|C-P|}[/mm] zu [mm]\frac{|B-P|}{|D-P|}[/mm] kommen ,das ist
> die frage:/

hattest Du analytische Geometrie (quasi *anschauliche lineare Algebra light*)
in der Schule gehabt?

Mach' Dir das Ganze damit klar und übertrage das Ganze dann. Die komplexe
Ebene ist auch nur der euklidische *Standard-Anschauungsraum* [mm] $\IR^2$. [/mm] (Jedenfalls
bzgl. der Forderungen der Aufgabe; natürlich gibt es noch etwas mehr,
denn die Körperaxiome sind ja erfüllt, und daher gibt es auch noch eine
Multiplikation, die diesen [mm] $\IR^2$ [/mm] *interessanter* macht...).

Helfen tut hier sicher auch sowas wie

    $z=a+i*b [mm] \in (\IR+i*\IR) \cong \IC$ [/mm]

    [mm] $\Longrightarrow$ $|z|=\sqrt{a^2+b^2}$ [/mm] bzw. [mm] $|z|^2=a^2+b^2$ [/mm]

Nebenbei: Wie beschreibt man Geraden in [mm] $\IC$? [/mm] Wenn sie parallel zur imaginären
Achse läuft, wird sie mit [mm] $x_0 \in \IR$ [/mm] durch

    [mm] $\{z=x+i*y \in \IC \mid x=x_0;\;y \in \IR\}$ [/mm]

beschrieben.

Die "Gerade mit Steigung 2 durch den Ursprung" wäre

    [mm] $\{z=x+i*y \in \IC \mid y=2*x+0;\; x \in \IR\}$ [/mm]

Beachte: [mm] $z=x+i*y\,$ [/mm] mit $x,y [mm] \in \IR$ [/mm] identifiziert man mit $(x,y) [mm] \in \IR^2$. [/mm]

So, das wären die ersten *Anstöße*. Wieweit kommst Du damit?

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de