www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - summe
summe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

summe: summenzeichen
Status: (Frage) beantwortet Status 
Datum: 14:36 Mi 02.01.2008
Autor: weihnachtsman

Aufgabe
Sei a eine reele postivie Zahl.

Zeige [mm] \summe_{k=0}^{\infty}\bruch{1}{(a+k)*(a+k+1)} =\bruch{1}{a} [/mm]

kann mir hier jm nur ein stichwort geben, wie ich hier vorgehen kann?

        
Bezug
summe: Partialbruchzerlegung
Status: (Antwort) fertig Status 
Datum: 14:39 Mi 02.01.2008
Autor: Roadrunner

Hallo weihnachtsman!


Führe folgende MBPartialbruchzerlegung durch:
[mm] $$\bruch{1}{(a+k)*(a+k+1)} [/mm] \ = \ [mm] \bruch{A}{a+k}+\bruch{B}{a+k+1}$$ [/mm]
Damit erhältst Du eine sogenannte "Teleskopsumme", bei der sich fast alle Summenglieder eliminieren.


Gruß vom
Roadrunner


Bezug
                
Bezug
summe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:51 Mi 02.01.2008
Autor: weihnachtsman

hab mir den link mal zur partialbruchzerlegung durchgelesen...
eigentlich hatte ich das noch in den vorlesungen nicht gehabt... dürfte das ja dann auch nicht verwenden... gibt es noch andere wege?



ist das hier eine reihe, die gegen 1/a konvergiert?

Bezug
                        
Bezug
summe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:01 Mi 02.01.2008
Autor: barsch

Hi,

ich hatte Partialbruchzerlegung auch nie in der Vorlesung, musste sie dennoch schon oft benutzen.

Ich glaube es wird vorausgesetzt, dass man eine Partialbruchzerlegung durchführen kann. [keineahnung]

MfG barsch

Bezug
                        
Bezug
summe: sehe keinen anderen Weg
Status: (Antwort) fertig Status 
Datum: 15:07 Mi 02.01.2008
Autor: Roadrunner

Hallo weihnachtsman!


> eigentlich hatte ich das noch in den vorlesungen nicht
> gehabt... dürfte das ja dann auch nicht verwenden... gibt
> es noch andere wege?

Hier sehe ich keinen anderen Lösungsweg.


> ist das hier eine reihe, die gegen 1/a konvergiert?

[ok] Genau!


Gruß vom
Roadrunner


Bezug
                
Bezug
summe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:10 Mi 02.01.2008
Autor: weihnachtsman


>  [mm]\bruch{1}{(a+k)*(a+k+1)} \ = \ \bruch{A}{a+k}+\bruch{B}{a+k+1}[/mm]

irgenwie verstehe ich das nicht wie das gleich sein kann:
[mm] \bruch{A}{a+k}+\bruch{B}{a+k+1}=\bruch{A(a+k+1)+B(a+k)}{(a+k)*(a+k+1)} [/mm]

Müsste ich dass A und B so wählen, dass der Zähler 1 wird? Eigentlich schon oder


Bezug
                        
Bezug
summe: Koeffizientenvergleich
Status: (Antwort) fertig Status 
Datum: 15:18 Mi 02.01.2008
Autor: Roadrunner

Hallo weihnachtsman!


Fasse mal im Zähler zusammen und sortiere etwas die Glieder mit $k_$ und den Rest:
$$A*(a+k+1)+B*(a+k) \ = \ ... \ = \ [mm] \red{(...)}*k+\blue{(...)}$$ [/mm]
Anschließend einen Koeffizientenvergleich mit $1 \ = \ [mm] \red{0}*k+\blue{1}$ [/mm] durchführen.

Damit solltest Du dann $A \ = \ 1$ sowie $B \ = \ -1$ erhalten.


Gruß vom
Roadrunner


Bezug
                                
Bezug
summe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:56 Mi 02.01.2008
Autor: weihnachtsman

ich habe also:

[mm] \bruch{1}{a+k}-\bruch{1}{a+k+1} [/mm]

[mm] =(\bruch{1}{a}-\bruch{1}{a+1})+(\bruch{1}{a+1}-\bruch{1}{a+2})+...+(\bruch{1}{a+oo}-\bruch{1}{a+2*oo}) [/mm]
[mm] =\bruch{1}{a}-\bruch{1}{a+2*oo} [/mm]
[mm] =\bruch{1}{a} [/mm] , weil [mm] \bruch{1}{a+2*oo} [/mm] gegen 0 konvergiert

Kann man das schreiben?

Bezug
                                        
Bezug
summe: Antwort
Status: (Antwort) fertig Status 
Datum: 16:01 Mi 02.01.2008
Autor: Kroni

Hi,

nein, das kannst du so nicht schreiben, da es sich hier um eine Reihe handelt.
Wenn du argumentierst, dass es sich bei dieser Reihe in der Umschreibung der Reihenglieder, wie du es mit der Partialbruchzerlegung gemacht hast, um eine Teleskopsumme handelt und dann die Konsequenzen ziehst, kanns tdu zeigen, dass der Grenzwert 1/a ist. So kannst du das allerdings nicht beweisen.

LG

Kroni

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de