www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - summe von (1+x^2^n)
summe von (1+x^2^n) < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

summe von (1+x^2^n): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:31 So 05.06.2011
Autor: elmanuel

Aufgabe
Es gilt: [mm] x\neq [/mm] 1, n [mm] \in \mathbb{N} \geq [/mm] 0 [mm] \newline [/mm]
Beweisen Sie:
[mm] \sum_{k=0}^{n}= \dfrac {1-x^{2^{(n+1)}}}{1-x} [/mm]

Ich komme hier nicht weiter...

Hier meine Ansätze:

Lösungsversuch durch vollst. Ind.

n=0

[mm] 1+x=\dfrac{1-x^2}{1-x}=\dfrac{(1-x)(1+x)}{1-x}=1+x [/mm]

[mm] \Rightarrow [/mm] w.A.

n [mm] \to [/mm] n+1

[mm] \sum_{k=0}^{n+1}=(1+x^{2^{n+1}}) [/mm] + [mm] \sum_{k=0}^{n+1}= \dfrac {1-x^{2^{(n+1)}}}{1-x} [/mm] + [mm] 1+x^{2^{n+1}} [/mm]

jetzt habe ich versucht daraus irgendwie
[mm] \dfrac{1-x^{2^{n+2}}}{1-x} [/mm]
umzuformen...

leider ohne erfolg

hat jemand einen tipp??



        
Bezug
summe von (1+x^2^n): Antwort
Status: (Antwort) fertig Status 
Datum: 22:07 So 05.06.2011
Autor: MathePower

Hallo elmanuel,

> Es gilt: [mm]x\neq[/mm] 1, n [mm]\in \mathbb{N} \geq[/mm] 0 [mm]\newline[/mm]
>  Beweisen Sie:
>  [mm]\sum_{k=0}^{n}= \dfrac {1-x^{2^{(n+1)}}}{1-x}[/mm]


Hier fehlt doch was.

Poste die genaue Aufgabenstellung.


>  Ich komme
> hier nicht weiter...
>  
> Hier meine Ansätze:
>
> Lösungsversuch durch vollst. Ind.
>
> n=0
>  
> [mm]1+x=\dfrac{1-x^2}{1-x}=\dfrac{(1-x)(1+x)}{1-x}=1+x[/mm]
>  
> [mm]\Rightarrow[/mm] w.A.
>  
> n [mm]\to[/mm] n+1
>  
> [mm]\sum_{k=0}^{n+1}=(1+x^{2^{n+1}})[/mm] + [mm]\sum_{k=0}^{n+1}= \dfrac {1-x^{2^{(n+1)}}}{1-x}[/mm]
> + [mm]1+x^{2^{n+1}}[/mm]
>  
> jetzt habe ich versucht daraus irgendwie
> [mm]\dfrac{1-x^{2^{n+2}}}{1-x}[/mm]
>  umzuformen...
>  
> leider ohne erfolg
>
> hat jemand einen tipp??
>  


Bringe die rechte Seite auf den Hauptnenner.


>


Gruss
MathePower  

Bezug
                
Bezug
summe von (1+x^2^n): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:02 So 05.06.2011
Autor: elmanuel


> Hallo elmanuel,
>  
> > Es gilt: [mm]x\neq[/mm] 1, n [mm]\in \mathbb{N} \geq[/mm] 0 [mm]\newline[/mm]
>  >  Beweisen Sie:
>  >  [mm]\sum_{k=0}^{n}= \dfrac {1-x^{2^{(n+1)}}}{1-x}[/mm]
>  
>
> Hier fehlt doch was.
>  
> Poste die genaue Aufgabenstellung.

Das war ein guter Tipp! ich sehe gerade das ich mich da übel verschaut hab!
Es ist nicht die Summe sondern das Produkt!

Aufgabenstellung:

Beweisen Sie die folgende Identität für alle angegebenen n [mm] \in \mathbb{N}: [/mm] n [mm] \geq [/mm] 0

[mm] (1+x)(1+x^2)(1+x^4)...(1+x^{2^{n-1}})(1+x^2n)=\dfrac {1-x^{2^{(n+1)}}}{1-x} [/mm]

>  
>
> >  Ich komme

> > hier nicht weiter...
>  >  
> > Hier meine Ansätze:
> >
> > Lösungsversuch durch vollst. Ind.
> >
> > n=0
>  >  
> > [mm]1+x=\dfrac{1-x^2}{1-x}=\dfrac{(1-x)(1+x)}{1-x}=1+x[/mm]
>  >  
> > [mm]\Rightarrow[/mm] w.A.
>  >  
> > n [mm]\to[/mm] n+1
>  >  
> > [mm]\sum_{k=0}^{n+1}=(1+x^{2^{n+1}})[/mm] + [mm]\sum_{k=0}^{n+1}= \dfrac {1-x^{2^{(n+1)}}}{1-x}[/mm]
> > + [mm]1+x^{2^{n+1}}[/mm]
>  >  
> > jetzt habe ich versucht daraus irgendwie
> > [mm]\dfrac{1-x^{2^{n+2}}}{1-x}[/mm]
>  >  umzuformen...
>  >  
> > leider ohne erfolg
> >
> > hat jemand einen tipp??
>  >  
>
>
> Bringe die rechte Seite auf den Hauptnenner.
>

ok also mit der korrigierten angabe geht es jetzt eh ganz einfach auf:

[mm] \dfrac {(1-x^{2^{n+1}})(1+x^{2^{n+1}})}{1-x} [/mm]  
[mm] =\dfrac {1+x^{2^{n+1}}-x^{2^{n+1}}-x^{2^{n+2}}}{1-x} [/mm]
[mm] =\dfrac{1-x^{2^{n+2}}}{1-x} [/mm]
qed!

>
> >
>  
>
> Gruss
>  MathePower  


Besten Dank MathePower und gute n8
:)

Bezug
                        
Bezug
summe von (1+x^2^n): Antwort
Status: (Antwort) fertig Status 
Datum: 23:15 So 05.06.2011
Autor: kamaleonti

Hallo elmanuel,
>  
> Aufgabenstellung:
>  
> Beweisen Sie die folgende Identität für alle angegebenen
> n [mm]\in \mathbb{N}:[/mm] n [mm]\geq[/mm] 0
>
> [mm](1+x)(1+x^2)(1+x^4)...(1+x^{2^{n-1}})(1+x^{2^n})=\dfrac {1-x^{2^{(n+1)}}}{1-x}[/mm]

> > >
> > > Lösungsversuch durch vollst. Ind.
> > >
> > > n=0
>  >  >  
> > > [mm]1+x=\dfrac{1-x^2}{1-x}=\dfrac{(1-x)(1+x)}{1-x}=1+x[/mm]
>  >  >  
> > > [mm]\Rightarrow[/mm] w.A.
>  >  >  
> > > n [mm]\to[/mm] n+1
>  >  >  

[mm] \prod_{i=0}^{n+1}(1+x^{2^i})=\left(\prod_{i=0}^{n}(1+x^{2^i})\right)*(1+x^{2^{n+1}})=\ldots [/mm]

> [mm]\dfrac {(1-x^{2^{n+1}})(1+x^{2^{n+1}})}{1-x}[/mm]  
> [mm]=\dfrac {1+x^{2^{n+1}}-x^{2^{n+1}}-x^{2^{n+2}}}{1-x}[/mm]
>  
> [mm]=\dfrac{1-x^{2^{n+2}}}{1-x}[/mm]
>  qed!

Stimmt so!

LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de