www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - summen-/ faktorregel
summen-/ faktorregel < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

summen-/ faktorregel: hilfe,tipp
Status: (Frage) beantwortet Status 
Datum: 20:19 Di 13.04.2010
Autor: artstar

Geben sie einen Funktionsterm für die Ableitung an:

1. w(y) = [mm] \wurzel{xy} [/mm]
2. A(r) = [mm] 2ar^{2}-5a^{2}r^{3}+r [/mm]
3. K(p) = [mm] \wurzel{2pq}+3p^{2}q^{2}+2p-4q^{3} [/mm]

1.  [mm] \bruch{1}{2\wurzel{xy}} [/mm]

2. a(r)= 4a-10a

3.

wie ihr seht brauche ich dringend hilfe :(  

        
Bezug
summen-/ faktorregel: Antwort
Status: (Antwort) fertig Status 
Datum: 20:35 Di 13.04.2010
Autor: angela.h.b.


> Geben sie einen Funktionsterm für die Ableitung an:
>
> 1. w(y) = [mm]\wurzel{xy}[/mm]
>  2. A(r) = [mm]2ar^{2}-5a^{2}r^{3}+r[/mm]
>  3. K(p) = [mm]\wurzel{2pq}+3p^{2}q^{2}+2p-4q^{3}[/mm]
>
> 1.  [mm]\bruch{1}{2\wurzel{xy}}[/mm]
>  
> 2. a(r)= 4a-10a
>  
> 3.
>
> wie ihr seht brauche ich dringend hilfe :(  

Hallo,

ja, das läßt sich in der Tat nicht leugnen...


Ich vereinfache die Aufgaben mal etwas.
Erstens sieht man so, was Du kannst, und zweitens ist das fürs spätere Ableiten der eigentlichen Funktionen als Vorübung nützlich.

Leite doch mal die folgenden drei Funktionen ab:

1. w(y) = [mm]\wurzel{5y}[/mm]  

Tip hierzu: die Variable, nach der zu differenzieren ist, heißt hier jetzt y.
Falls Du mit der Kettenregel ableitest, vergiß die innere Ableitung nicht,
falls Du ohne Kettenregel ableitest, bedenke: [mm] \wurzel{5y}=\wurzel{5}*\wurzel{y}. [/mm]

w'(y)= ...

2. 2. A(r) = [mm]2*7r^{2}-5*7^{2}r^{3}+r[/mm]

Tips: die Variable, nach der zu differenzieren ist, heißt hier jetzt r.  Verwende die Regeln fürs Ableiten von Potenzen


3. K(p) = [mm]\wurzel{2p*7}+3p^{2}*7^{2}+2p-4*7^{3}[/mm]

Tip: die Variable, nach der zu differenzieren ist, heißt hier jetzt p.
Verwende die Hinweise von 1. und 2.

Gruß v. Angela

Bezug
                
Bezug
summen-/ faktorregel: hilfe, idee
Status: (Frage) beantwortet Status 
Datum: 20:58 Di 13.04.2010
Autor: artstar

w(y)= [mm] \wurzel{5y} [/mm]   das wäre ja 5y [mm] \bruch{1}{2} [/mm]  -> [mm] \bruch{9}{2}x -\bruch{1}{2} [/mm]


neee, fällt mir grad sehr schwer.

2. 4ar-10a [mm] *15r^{2}+r [/mm]  

und 3. klappt  nicht, sorry, wir haben das thema ja erst angeschnitten und die leichten aufgaben kann ich ja auch noch aber die sind zu schwer ... .

3.k(p) = [mm] \wurzel{2pq} [/mm] + 6p*6q+2p [mm] -12q^{2} [/mm]



Bezug
                        
Bezug
summen-/ faktorregel: Antwort
Status: (Antwort) fertig Status 
Datum: 21:13 Di 13.04.2010
Autor: leduart

Hallo
zu deinen Fehlern allgemein. ob da ne Konstante steht als Buchstabe oder Zahl ist egal.
[mm] f(x)=\wurzel{5x}=\wurzel{5}*\wurzel{x} [/mm]
[mm] abgeleitet:f'(x)=\wurzel{5}*1/2\wurzel{x} [/mm]
oder nach der Kettenregel
[mm] f'=5/2\wurzel{5x} [/mm]
ersetzest du 5 durch die konstante y hast du
[mm] $f(x)=\wurzel{xy}$ f'(x)=y*\1/2\wurzel{x} [/mm]
zweites Beispiel [mm] f(r)=5a^2*r^3 5a^2 [/mm] ist ne Konstante!
deshalb [mm] f'(r)=5a^2*3r°2r [/mm] abgeleite nach r gibt 1.
k(p) = $ [mm] \wurzel{2pq} [/mm] $ + 6p*6q+2p $ [mm] -12q^{2} [/mm] $
q ist ne feste Zahl hier also behandle es wie ne Zahl, natürlich ist auch 6q oder 2q ne Zahl.
also versuchs noch mal.
die 2te fkt war auch falsch.
Gruss leduart




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de