www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - surjektive Verknüpfung
surjektive Verknüpfung < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

surjektive Verknüpfung: Tipps
Status: (Frage) beantwortet Status 
Datum: 13:25 Do 27.10.2011
Autor: Mathegirl

Aufgabe
Zeige:
Ist [mm] g\circ [/mm] f surjektiv und g injektiv, dann ist f surjektiv



Das versteh ich nicht ganz!
Muss in dem Fall [mm] g\circ [/mm] f ist surjetiv nicht gelten, dass dann g auch surjektiv ist und nicht f?


MfG
Mathegirl

        
Bezug
surjektive Verknüpfung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:40 Do 27.10.2011
Autor: fred97


> Zeige:
>  Ist [mm]g\circ[/mm] f surjektiv und g injektiv, dann ist f
> surjektiv
>  
>
> Das versteh ich nicht ganz!
>  Muss in dem Fall [mm]g\circ[/mm] f ist surjetiv nicht gelten, dass
> dann g auch surjektiv ist und nicht f?

Bitte sag genau, wo die Funktionen definiert sind und wohin sie gehen, anderenfalls ist es sinnlos, sich Gedanken zu machen.

Beispiel:

f: [mm] \IR \to [/mm] [0, [mm] \infty), f(x)=x^2 [/mm]

[mm] g_1: [/mm] [0, [mm] \infty) \to [/mm]  [0, [mm] \infty), g_1(x) =\wurzel{x} [/mm]

Dann haben wir : [mm] $g_1 \circ [/mm] f: [mm] \IR \to [/mm]  [0, [mm] \infty)$ [/mm] und [mm] (g_1 \circ [/mm] f) (x)=|x|.

In diesem Fall ist [mm] g_1 \circ [/mm] f  surjektiv.

Hat man aber

f: [mm] \IR \to [/mm] [0, [mm] \infty), f(x)=x^2 [/mm]

[mm] g_2: [/mm] [0, [mm] \infty) \to \IR, g_2(x) =\wurzel{x} [/mm]

Dann haben wir : [mm] $g_2 \circ [/mm] f: [mm] \IR \to \IR$ [/mm] und [mm] (g_2 \circ [/mm] f) (x)=|x|.

In diesem Fall ist [mm] g_2 \circ [/mm] f  nicht surjektiv.

FRED

>  
>
> MfG
>  Mathegirl


Bezug
                
Bezug
surjektive Verknüpfung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:48 Do 27.10.2011
Autor: Mathegirl

[mm] M_1,M_2, M_3 [/mm] seien Mengen
[mm] f:M_1\to M_2 [/mm]
[mm] g:M_2\to M_3 [/mm]

das habe ich vorgegeben. Dann folgt die Aufgabenstellung die ich gepostet habe!

Bezug
        
Bezug
surjektive Verknüpfung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:52 Do 27.10.2011
Autor: hippias


> Zeige:
>  Ist [mm]g\circ[/mm] f surjektiv und g injektiv, dann ist f
> surjektiv
>  
>
> Das versteh ich nicht ganz!
>  Muss in dem Fall [mm]g\circ[/mm] f ist surjetiv nicht gelten, dass
> dann g auch surjektiv ist und nicht f?
>  
>
> MfG
>  Mathegirl

Du hast schon recht: $g$ ist surjektiv. Doch man kann sich auch ueberlegen, dass $f$ surjektiv sein muss. Mein Tip waere, die Definition der Surjektivitaet fuer $f$ nachzupruefen, wobei man einen gewissen Umweg ueber $g$ gehen sollte.


Bezug
                
Bezug
surjektive Verknüpfung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:17 Do 27.10.2011
Autor: Mathegirl

Ich hab mal versucht das zu zeigen, aber kriege nur den Beweis hin, dass g surjektiv ist. g soll aber injektiv sein und f surjektiv!

da habe ich keine ahnung wie das geht!

MfG Mathegirl

Bezug
        
Bezug
surjektive Verknüpfung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:34 Do 27.10.2011
Autor: donquijote


> Zeige:
>  Ist [mm]g\circ[/mm] f surjektiv und g injektiv, dann ist f
> surjektiv
>  
>
> Das versteh ich nicht ganz!
>  Muss in dem Fall [mm]g\circ[/mm] f ist surjetiv nicht gelten, dass
> dann g auch surjektiv ist und nicht f?

Aus [mm] g\circ [/mm] f surjektiv folgt in jedem Fall, dass g surjektiv sein muss (auch wenn g nicht injektiv ist).
Ist g nun injektiv, benutzt man die Definition:
Für beliebiges [mm] y\in M_2 [/mm] gilt:
Da [mm] g\circ [/mm] f surjektiv ist gibt es zu [mm] z=g(y)\in M_3 [/mm] ein [mm] x\in M_1 [/mm] mit [mm] g\circ [/mm] f(x)=g(f(x))=z=g(y)
Da g injektiv ist, folgt daraus y=f(x),
d.h. zu gegebenem y gibt es ein x mit f(x)=y, womit f surjektiv ist.

>  
>
> MfG
>  Mathegirl


Bezug
                
Bezug
surjektive Verknüpfung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:51 Do 27.10.2011
Autor: Mathegirl

jetzt hab ich es verstanden. ich habe mal wieder viel zu umständlich gedacht ;)

Danke!!!!


Mathegirl

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de