www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - symmetrische Gruppe
symmetrische Gruppe < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

symmetrische Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:32 Mi 20.10.2010
Autor: Mandy_90

Aufgabe
Sei X eine Menge und sei S(X)={ [mm] \mu:X-->X [/mm] | [mm] \mu [/mm]  ist  bijektiv}.Dann gilt:
[mm] 1.\forall \mu,\nu \in S(X):\mu*\nu \in [/mm] S(X)
[mm] 2.id_{X} \in [/mm] S(X)
[mm] 3.\forall \mu \in S(X):id_{X}*\mu=\mu*id_{X}=\mu, \mu^{-1} \in [/mm] S(X)
[mm] \mu^{-1}*\mu=id_{X}=\mu*\mu^{-1} [/mm]


Hallo nochmal^^

Ich habe diese Feststellungen oben mal in Worte gefasst,bin mir aber nicht ganz sicher ob das richtig ist.

[mm] 1.\forall \mu,\nu \in S(X):\mu*\nu \in [/mm] S(X)
Das heißt doch einfach,dass wenn ich aus der Menge X zwei verschiedene Elemente miteinander multipliziere,dass ich dann ebenfalls ein Element aus der Menge X rausbekomme.

[mm] 2.id_{X}\in [/mm] S(X)
Die Identität auf X ist ebenfalls aus der Menge X,aber das ist doch logisch oder?

[mm] 3.\forall \mu \in S(X):id_{X}*\mu=\mu*id_{X}=\mu, \mu^{-1} \in [/mm] S(X)
[mm] \mu^{-1}*\mu=id_{X}=\mu*\mu^{-1} [/mm]
Wenn ich eine Abbildung mit der Identische Abbildung multipliziere,bekomme ich wieder die Abbildung.

        
Bezug
symmetrische Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 22:48 Mi 20.10.2010
Autor: schachuzipus

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo Mandy,


> Sei X eine Menge und sei S(X)={ [mm]\mu:X-->X[/mm] | [mm]\mu[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

  ist  

> bijektiv}.Dann gilt:
>  [mm]1.\forall \mu,\nu \in S(X):\mu*\nu \in[/mm] S(X)
>  [mm]2.id_{X} \in[/mm] S(X)
>  [mm]3.\forall \mu \in S(X):id_{X}*\mu=\mu*id_{X}=\mu, \mu^{-1} \in[/mm]
> S(X)
>  [mm]\mu^{-1}*\mu=id_{X}=\mu*\mu^{-1}[/mm]
>  
> Hallo nochmal^^
>  
> Ich habe diese Feststellungen oben mal in Worte gefasst,bin
> mir aber nicht ganz sicher ob das richtig ist.
>  
> [mm]1.\forall \mu,\nu \in S(X):\mu*\nu \in[/mm] S(X)
>  Das heißt doch einfach,dass wenn ich aus der Menge X zwei
> verschiedene Elemente miteinander multipliziere,dass ich
> dann ebenfalls ein Element aus der Menge X rausbekomme.

Ja, du sollest bedenken, dass dein [mm]\cdot[/mm] üblicherweise mit [mm]\circ[/mm] bezeichnet wird und die Verkettung (Hintereinanderausführung) von Funktionen meint.

In 1. sollst du zeigen, dass die Verkettung von zwei bijektiven Funktionen auf X wieder eine bijektive Funktion auf X ergibt.

>  
> [mm]2.id_{X}\in[/mm] S(X)
>  Die Identität auf X ist ebenfalls aus der Menge X,aber
> das ist doch logisch oder?

;-)

Ja! Zeige, dass die Identität bijektiv auf X ist ...

>  
> [mm]3.\forall \mu \in S(X):id_{X}*\mu=\mu*id_{X}=\mu, \mu^{-1} \in[/mm] S(X)
>  [mm]\mu^{-1}*\mu=id_{X}=\mu*\mu^{-1}[/mm]
>  Wenn ich eine Abbildung mit der Identische Abbildung
> multipliziere verkette ,bekomme ich wieder die Abbildung.

Stimmt, aber das sollst du ja zeigen:

Etwa so:

Für bel. [mm]a\in X[/mm] gilt: [mm](\mu\circ\operatorname{id_X})(a)=\mu(\operatorname{id_X}(a))=\mu(a)[/mm], also [mm]\mu\circ\operatorname{id_X}=\mu[/mm]

Gruß

schachuzipus


Bezug
                
Bezug
symmetrische Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:59 Fr 22.10.2010
Autor: Mandy_90


>  
> >  

> > [mm]3.\forall \mu \in S(X):id_{X}*\mu=\mu*id_{X}=\mu, \mu^{-1} \in[/mm]
> S(X)
>  >  [mm]\mu^{-1}*\mu=id_{X}=\mu*\mu^{-1}[/mm]
>  >  Wenn ich eine Abbildung mit der Identische Abbildung
> > multipliziere verkette ,bekomme ich wieder die Abbildung.
>

Was ist hier eigentlich richtig, das Wort Abbildung oder Funktion?

lg

> Stimmt, aber das sollst du ja zeigen:
>  
> Etwa so:
>  
> Für bel. [mm]a\in X[/mm] gilt:
> [mm](\mu\circ\operatorname{id_X})(a)=\mu(\operatorname{id_X}(a))=\mu(a)[/mm],
> also [mm]\mu\circ\operatorname{id_X}=\mu[/mm]
>  
> Gruß
>  
> schachuzipus
>  


Bezug
                        
Bezug
symmetrische Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 11:01 Fr 22.10.2010
Autor: fred97


> >  

> > >  

> > > [mm]3.\forall \mu \in S(X):id_{X}*\mu=\mu*id_{X}=\mu, \mu^{-1} \in[/mm]
> > S(X)
>  >  >  [mm]\mu^{-1}*\mu=id_{X}=\mu*\mu^{-1}[/mm]
>  >  >  Wenn ich eine Abbildung mit der Identische Abbildung
> > > multipliziere verkette ,bekomme ich wieder die Abbildung.
> >
>
> Was ist hier eigentlich richtig, das Wort Abbildung oder
> Funktion?


Das kannst Du halten wie Du willst.

               Abbildung = Funktion

FRED

>  
> lg
>  > Stimmt, aber das sollst du ja zeigen:

>  >  
> > Etwa so:
>  >  
> > Für bel. [mm]a\in X[/mm] gilt:
> >
> [mm](\mu\circ\operatorname{id_X})(a)=\mu(\operatorname{id_X}(a))=\mu(a)[/mm],
> > also [mm]\mu\circ\operatorname{id_X}=\mu[/mm]
>  >  
> > Gruß
>  >  
> > schachuzipus
>  >  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de