www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - systeme mit nichtkonst. Koeff.
systeme mit nichtkonst. Koeff. < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

systeme mit nichtkonst. Koeff.: Verständnis
Status: (Frage) beantwortet Status 
Datum: 13:00 Di 27.12.2011
Autor: helene

Hallo zusammen,
cih lerne gerade für ne mündliche Examensprüfung und habe da eine Grundlegende Frage zur Lösbarkeit von DGL-Systemen mit nichtkonstanten Koeffizienten.

Also wir haben eine inhomogene DGL der Form
y´(t)=A(t)y(t)+b(t)
wobei y´,y und b vektorwertig sind.

Meine Frage:
hat A(t) nichtkonstante Koeffizienten ist es nicht leicht, eine Lösung zu finden. Also es gibt da widersprüchliche Behauptungen aus meinem Bekanntenkreis. Meine Meinung ist, dass man die homogene Lösung i.a. nur finden kann, wenn eine Lösung schon bekannst ist. Dann kann man ja das Reduktionsverfahren von dÁlembert anwenden zur Bestimmung weiterer Lösungen, oder?
Da A(t) ja nicht konstant ist, kann man den Ansatz mit den Eigenwerten und Eigenvektoren ja nicht anwenden.
Oder gibt es für nichtkonstante A(t) noch andere, grundlegende Methoden zur Bestimmung der Lösung außer numerisch??

ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
systeme mit nichtkonst. Koeff.: Antwort
Status: (Antwort) fertig Status 
Datum: 16:29 Di 27.12.2011
Autor: MathePower

Hallo helene,

[willkommenmr]

> Hallo zusammen,
>  cih lerne gerade für ne mündliche Examensprüfung und
> habe da eine Grundlegende Frage zur Lösbarkeit von
> DGL-Systemen mit nichtkonstanten Koeffizienten.
>
> Also wir haben eine inhomogene DGL der Form
>  y´(t)=A(t)y(t)+b(t)
>  wobei y´,y und b vektorwertig sind.
>  
> Meine Frage:
>  hat A(t) nichtkonstante Koeffizienten ist es nicht leicht,
> eine Lösung zu finden. Also es gibt da widersprüchliche
> Behauptungen aus meinem Bekanntenkreis. Meine Meinung ist,
> dass man die homogene Lösung i.a. nur finden kann, wenn
> eine Lösung schon bekannst ist. Dann kann man ja das
> Reduktionsverfahren von dÁlembert anwenden zur Bestimmung
> weiterer Lösungen, oder?


Ja, dieses Verfahren kann dann zum Auffinden weiterer Lösungen
angewendet werden.


>  Da A(t) ja nicht konstant ist, kann man den Ansatz mit den
> Eigenwerten und Eigenvektoren ja nicht anwenden.
>  Oder gibt es für nichtkonstante A(t) noch andere,
> grundlegende Methoden zur Bestimmung der Lösung außer
> numerisch??
>  


Meines Wissens nicht.


> ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt


Gruss
MathePower

Bezug
                
Bezug
systeme mit nichtkonst. Koeff.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:43 Mi 28.12.2011
Autor: helene

hallo mathepower,
vielen dank für die antworten.
manchmal braucht man nur ne kurze bestätigung :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de