www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - tan(t/2)
tan(t/2) < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

tan(t/2): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:11 Mi 01.02.2012
Autor: sissenge

Aufgabe
[mm] \integral{\bruch{1}{(sint)^3}dx} [/mm]



In der Übung habe ich mir aufgeschrieben, dass wir folgendes substituiert haben: z=tan(t/2), dass macht man ja scheinbar immer bei trigonometrischen Funktionen?

aber wie komme ich drauf, dass dann sint= [mm] \bruch{2z}{1+z^2} [/mm] ist???
Also ich finde keine Additionstheoreme, die mcih dahin führen.

Genauso, wie cos(x) bei der Substitution dann = [mm] \bruch{1-(tan(t/2))^2}{1+(tan(t/2))^2} [/mm] sein soll??

Bitte erklärt mir das einer!!!

        
Bezug
tan(t/2): Antwort
Status: (Antwort) fertig Status 
Datum: 20:59 Mi 01.02.2012
Autor: Marcel

Hallo,

> [mm]\integral{\bruch{1}{(sint)^3}dx}[/mm]
>  
>
> In der Übung habe ich mir aufgeschrieben, dass wir
> folgendes substituiert haben: z=tan(t/2), dass macht man ja
> scheinbar immer bei trigonometrischen Funktionen?

man macht immer "etwas, was sich anbietet" und "hofft, Glück gehabt zu haben" und nicht etwas übersehen zu haben. Warum sich das hier anbietet, sehe ich gerade auch nicht. Aber gut: Irgendjemand hat's gesehen und schlägt's nun mal vor, also schauen wir mal, ob er gut geguckt hat! (Vielleicht hat er ja auch erstmal in die Additionstheoreme geguckt und kam' dann auf die Idee...)

> aber wie komme ich drauf, dass dann sint= [mm]\bruch{2z}{1+z^2}[/mm]
> ist???
>  Also ich finde keine Additionstheoreme, die mcih dahin
> führen.

Es gilt
[mm] $$\sin(t)=\sin(\;t/2\,+\,t/2\;)=2*\sin(t/2)\cos(t/2)=2*\underbrace{\tan(t/2)}_{=z}*\cos^2(t/2)\,,$$ [/mm]
so dass nur noch
[mm] $$\cos^2(t/2)=1/(1+z^2)$$ [/mm]
bzw.
[mm] $$(1+z^2)*\cos^2(t/2)=1$$ [/mm]
nachzurechnen ist:
Es gilt
[mm] $$(1+z^2)*\cos^2(t/2)=\left(\frac{\cos^2(t/2)+\sin^2(t/2)}{\cos^2(t/2)}\right)*\cos^2(t/2)\,.$$ [/mm]

Siehst Du's nun? (Trigo. Pyth.!)

> Genauso, wie cos(x)

Da steht hoffentlich [mm] $\red{\cos(t)}$! [/mm]

> bei der Substitution dann =
> [mm]\bruch{1-(tan(t/2))^2}{1+(tan(t/2))^2}[/mm] sein soll??

Rechne es nach:
[mm] $$\frac{1-\tan^2(t/2)}{1+\tan^2(t/2)}=\frac{\frac{\cos^2(t/2)-\sin^2(t/2)}{\cos^2(t/2)}}{\frac{\cos^2(t/2)+\sin^2(t/2)}{\cos^2(t/2)}}=\cos^2(t/2)-\sin^2(t/2)\,.$$ [/mm]

Also soll [mm] $\cos^2(t/2)-\sin^2(t/2)=\cos(t)$ [/mm] gelten. Dafür ist es toll, dass man
[mm] $$\cos(t)=\cos(\;t/2\,+\,t/2\;)$$ [/mm]
schreiben kann. Hilft Dir das?

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de