www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - tangentengleichung
tangentengleichung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

tangentengleichung: Frage
Status: (Frage) beantwortet Status 
Datum: 15:33 Di 14.12.2004
Autor: watschelfuss

Hallole,
ich sollt folgende aufgabe lösen: die ebene kurve [mm] y^2/3 [/mm] + [mm] x^2/3 [/mm] = [mm] a^2/3 [/mm] soll an der stelle P(xo/yo) eine tangente haben. gleichung aufstellen.
meine ableitung sah dann so aus: y'= -(x/y)^-1/3  stimmt das? die tangentengleichung wurde dann aber sehr kompliziert. ich hab sie mit punktprobe von P und y' aufgestellt.
wer kann mir helfen? danke

        
Bezug
tangentengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:15 Mi 15.12.2004
Autor: Hugo_Sanchez-Vicario

Hallo watschelfuss,

ich denke du musst dich noch an den Formeleditor gewöhnen.

Deine Eingabe ist ein Kreis mit Radius a, du meinst aber sicher die Astroide, d.h. [mm]x^{2/3}+y^{2/3}=a^{2/3}[/mm]

Da kannst du nach x ableiten und bekommst
[mm]2/3\ x^{-1/3}[/mm]+[mm]2/3\ y^{-1/3}\cdot y'[/mm]=0

Auflösen nach y' ergibt dann
y'=[mm]-(x/y)^{-1/3}[/mm], ganz wie du es rausbekommen hast. :-)

Die Schreibweise 2^10 erzeugt übrigens [mm] 2^{1}0 [/mm] deshalb musst du Exponenten, die aus mehr als einem Zeichen bestehen, in geschweifte Klammern setzen, d.h. 2^{10} für [mm] 2^{10} [/mm]

Hugo

Bezug
                
Bezug
tangentengleichung: Frage
Status: (Frage) beantwortet Status 
Datum: 12:48 Mi 15.12.2004
Autor: watschelfuss

Danke für die bestätigung, hugo.
aber wie bekomm ich jetzt die tangentengleichung im Punkt P?
Grüßle watschelfuss

Bezug
                        
Bezug
tangentengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:07 Mi 15.12.2004
Autor: Hugo_Sanchez-Vicario

Na ganz einfach,

du nimmst die Punkt-Steigungs-Form der Geradengleichung:

[mm] y=m(x-x_0)+y_0 [/mm]

(m ist die Steigung) ;-)

Hugo

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de