www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - taylor polynome
taylor polynome < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

taylor polynome: untersuchung der güte
Status: (Frage) beantwortet Status 
Datum: 19:08 Mo 14.03.2005
Autor: wasting_the_dawn

hallo!
ich weiß, es ist egtl. ein bisschen zu spät, noch mit einer farge zu kommen, aber ich bin gerade am ende meiner facharbeit über taylor-polynome angekommen und stehe nun vor dem problem, der inpliziten anweisung meines lehrers nachzukommen.
er sagte, ich solle erläutern, warum das taylor-polynom die beste näherung auf basis eines polynoms zu einer punktion sei.
dazu habe ich materiula bekommen, dass beweißt, dass eine tangente die beste lineare annäherung ist (was auch einem taylor-p. mit dem grad n=1 entspricht).
wie könnte ich nun den bogen zu meiner fragestellung, warum das t-p. nun in jedem (nicht nur linearen) fall die beste näherung darstellt?

viellicht kennt jemand ein fallbeipiel, in dem eine approximation mithilfes des taylor-polynoms nicht angebracht ist?
ich bin für jede mühe und hilfe dankbar!

viele grüße
sarah

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
taylor polynome: Was heisst "gut"
Status: (Antwort) fertig Status 
Datum: 20:46 Mo 14.03.2005
Autor: leduart

Hallo
>  ich weiß, es ist egtl. ein bisschen zu spät, noch mit
> einer farge zu kommen, aber ich bin gerade am ende meiner
> facharbeit über taylor-polynome angekommen und stehe nun
> vor dem problem, der inpliziten anweisung meines lehrers
> nachzukommen.
>  er sagte, ich solle erläutern, warum das taylor-polynom
> die beste näherung auf basis eines polynoms zu einer
> punktion sei.
>  dazu habe ich materiula bekommen, dass beweißt, dass eine
> tangente die beste lineare annäherung ist (was auch einem
> taylor-p. mit dem grad n=1 entspricht).
>  wie könnte ich nun den bogen zu meiner fragestellung,
> warum das t-p. nun in jedem (nicht nur linearen) fall die
> beste näherung darstellt?

Ich kenn ja dein Material nicht, aber das 2. Taylorpolynom ist fuer die funktion f' wieder das 1. Taylorpolynom. Aber es ist sehr unklar was es heisst, das Beste Naeherungspolynom zu sein.
Man muss diskutieren, ob man Werte, die sehr in der Naehe des Entwicklungspunktes sind moeglichst genau haben will, oder die Funktion in ihrem weiteren Verlauf moeglichst genau kennen will. Ein bekanntes Beispiel wo "gut" oder "bestes" ziemlich sinnlos ist ist [mm] f(x)=e^-\bruch{1}{x^{2}}. [/mm]
bei Null nicht definiert aber leicht durch f(0)=0 stetig zu ergaenzen. Dann sind alle Ableitungen bei 0 0, d.h. jedes Taylorpolynom noch so hohen Grades ist [mm] P_{n}(x)=0! [/mm] Ist das eine gute Naeherung oder nicht?
In manchen Faellen ist das Polynom,das durch einige Punkte geht besser. Viele rational Fkt. (Zaeler und Nenner Polynom werden nur auf kleinen Stuecken gut angenaehert. Schoen waer ein Programm in dem du Funktionen und die entsprechenden Taylorpollynome plottest, und mit Naeherungen durch einige Punkte vergleichst. sin(x), Taylorpolynom um 0 ,2. oder 3.dazu Polynom durch 3 oder 4 bekannte Punkte.
Allerdings kennt man einige Funktionen, von denen an einer Stelle Funktionswert und Ableitungen leicht zu berechnen sind, andere Stellen dagegen schwer. Beispiel [mm] e^{x}, [/mm] bei x=0 alle Ableitungen bekannt=1 alle anderen Stellen nicht. Damit kann man z.Bsp [mm] e=e^{1} [/mm] berechnen!
Ich hoff das hilft weiter
Gruss leduart

>  
> viellicht kennt jemand ein fallbeipiel, in dem eine
> approximation mithilfes des taylor-polynoms nicht
> angebracht ist?
>  ich bin für jede mühe und hilfe dankbar!
>  
> viele grüße
>  sarah
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de