www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - taylorpolynom
taylorpolynom < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

taylorpolynom: so richtig?
Status: (Frage) beantwortet Status 
Datum: 19:06 Fr 05.05.2006
Autor: Janyary

Aufgabe
Bestimmen Sie das Taylor-Polynom [mm] p_{n} [/mm] fuer die Funktion
f: [mm] (1,\infty) \to \IR, f(x)=(x-1)*[ln(x-1)^{3}+x+1], [/mm]
die entwicklungsstelle [mm] x_{0}=2 [/mm] und beliebiges [mm] n\in\IN [/mm]

hi leute,
da bin ich nochmal :)

also zuerst hab ich mir ein paar ableitungen gebildet um ueberhaupt zu schaun was da passiert...
[mm] f^{1}(x)=ln(x-1)^{3}+2x+4 [/mm]
[mm] f^{2}(x)=\bruch{3}{x-1}+2 [/mm]
[mm] f^{3}(x)=\bruch{-3}{(x-1)^{2}} [/mm]
[mm] f^{4}(x)=\bruch{6}{(x-1)^{3}} [/mm]
[mm] f^{5}(x)=\bruch{-18}{(x-1)^{4}} [/mm]
danach hab ich auf die allgemeine form fuer n geschlossen mit
[mm] f^{n}(x)=\bruch{(-3)*(-1)^{n}(n-1)!}{(x-1)^{n}} [/mm]

jetzt hab ich die 2 eingesetzt und die werte berechnet
f(2)=3
[mm] f^{1}(2)=8 [/mm]
[mm] f^{2}(2)=5 [/mm]
[mm] f^{3}(2)=-3 [/mm]
[mm] f^{4}(2)=6 [/mm]
[mm] f^{5}(2)=-18 [/mm]
[mm] f^{n}(2)=(-3)*(-1)^{n}*(n-2)! [/mm]

ok das hab ich nun in die allgemeine formel fuer das taylorpolynom eingesetzt..

[mm] T_{n}(x)=3+8*(x-2)+\bruch{5}{2!}*(x-2)^{2}+\bruch{(-3)}{3!}*(x-2)^{3}+\bruch{6}{4!}*(x-2)^{4}+...+\bruch{(-3)*(-1)^{n}}{n(n-1)}*(x-2)^{n} [/mm]

Ist das soweit in Ordnung? Waere wirklich super, wenn da mal jemand drueber schaun koennte, weil ich das zum ersten mal selbst versucht hab.
ich dank euch schon mal im vorraus.

LG Jany :)

        
Bezug
taylorpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 20:15 Fr 05.05.2006
Autor: felixf

Hallo Jany!

> Bestimmen Sie das Taylor-Polynom [mm]p_{n}[/mm] fuer die Funktion
>  f: [mm](1,\infty) \to \IR, f(x)=(x-1)*[ln(x-1)^{3}+x+1],[/mm]
>  die
> entwicklungsstelle [mm]x_{0}=2[/mm] und beliebiges [mm]n\in\IN[/mm]
>  hi leute,
>  da bin ich nochmal :)

:-)

> also zuerst hab ich mir ein paar ableitungen gebildet um
> ueberhaupt zu schaun was da passiert...
>  [mm]f^{1}(x)=ln(x-1)^{3}+2x+4[/mm]
>  [mm]f^{2}(x)=\bruch{3}{x-1}+2[/mm]
>  [mm]f^{3}(x)=\bruch{-3}{(x-1)^{2}}[/mm]
>  [mm]f^{4}(x)=\bruch{6}{(x-1)^{3}}[/mm]
>  [mm]f^{5}(x)=\bruch{-18}{(x-1)^{4}}[/mm]
>  danach hab ich auf die allgemeine form fuer n geschlossen
> mit
>  [mm]f^{n}(x)=\bruch{(-3)*(-1)^{n}(n-1)!}{(x-1)^{n}}[/mm]

Das stimmt leider nicht ganz: Der Ausdruck gehoert zu [mm] $f^{n-1}(x)$ [/mm] (und gilt ab $n - 1 [mm] \ge [/mm] 3$). Das kannst du leicht sehen, wenn du $n = 2, 3, 4$ einsetzt...

> jetzt hab ich die 2 eingesetzt und die werte berechnet
>  f(2)=3
>  [mm]f^{1}(2)=8[/mm]
>  [mm]f^{2}(2)=5[/mm]
>  [mm]f^{3}(2)=-3[/mm]
>  [mm]f^{4}(2)=6[/mm]
>  [mm]f^{5}(2)=-18[/mm]
>  [mm]f^{n}(2)=(-3)*(-1)^{n}*(n-2)![/mm]

Auch hier musst du das wieder passend verschieben.

> ok das hab ich nun in die allgemeine formel fuer das
> taylorpolynom eingesetzt..
>  
> [mm]T_{n}(x)=3+8*(x-2)+\bruch{5}{2!}*(x-2)^{2}+\bruch{(-3)}{3!}*(x-2)^{3}+\bruch{6}{4!}*(x-2)^{4}+...+\bruch{(-3)*(-1)^{n}}{n(n-1)}*(x-2)^{n}[/mm]
>  
> Ist das soweit in Ordnung? Waere wirklich super, wenn da
> mal jemand drueber schaun koennte, weil ich das zum ersten
> mal selbst versucht hab.
>  ich dank euch schon mal im vorraus.

Abgesehen von der Verschiebung ists in Ordnung!

Wobei ich das Polynom dann an deiner Stelle so allgemein wie moeglich angeben wuerde, also [mm]T_{n}(x)=3+8 (x-2)+\bruch{5}{2} (x-2)^2 + \sum_{k=3}^n ... (x-2)^k[/mm] wobei du $...$ durch das richtige Ersetzen musst.

LG Felix


Bezug
                
Bezug
taylorpolynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:27 Sa 06.05.2006
Autor: Janyary

vielen dank nochmal fuer deine hilfe.
ja stimmt bei der n-ten ableitung hab ich nicht richtig aufgepasst. werd ich morgen dann gleich mal verbessern. naja und fuer die ersten 2 ableitungen hab ich leider keine form gefunden, die passt. aber wenn ich das dann so in etwa schreiben kann, ist das ja auch ok :)
also gute nacht und bis denn.

LG Jany

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de