totale Wahrscheinlichkeit < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:31 Mo 23.08.2010 | Autor: | Lukas87 |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo,
könnte mir jemand erklären (vielleicht mit einem verständlichen Beispiel), was genau die totale Wahrscheinlichkeit ist und wofür man sie benötigt bzw. wann sie zum Einsatz kommt?
Folgende Definition habe ich aus dem Buch „Wirtschaftsstatistik im Bachelor“:
„Bei m sich gegenseitig ausschließenden und den gesamten Ereignisraum erschöpfenden Bedingungen A1, A2, …Am kann man die totale Wahrscheinlichkeitsregel anwenden um P(B) zu berechnen:
[mm] P(B)=P(B│A_1 )*P(A_1 )+⋯+P(B|A_m)
[/mm]
(kombinierte Anwendung von Additionsregel und Multiplikationsregel).“
Ich würde gerne wissen, was „sich gegenseitig ausschließenden und den gesamten Ereignisraum erschöpfenden Bedingungen“ bedeutet? Weiß das jemand?
Danke und Gruß
|
|
|
|
Hallo!
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> Hallo,
>
> könnte mir jemand erklären (vielleicht mit einem
> verständlichen Beispiel), was genau die totale
> Wahrscheinlichkeit ist und wofür man sie benötigt bzw.
> wann sie zum Einsatz kommt?
Schau mal hier,
> Folgende Definition habe ich aus dem Buch
> „Wirtschaftsstatistik im Bachelor“:
>
> „Bei m sich gegenseitig ausschließenden und den gesamten
> Ereignisraum erschöpfenden Bedingungen A1, A2, …Am kann
> man die totale Wahrscheinlichkeitsregel anwenden um P(B) zu
> berechnen:
> [mm]P(B)=P(B│A_1 )*P(A_1 )+⋯+P(B|A_m)[/mm]
> (kombinierte
> Anwendung von Additionsregel und Multiplikationsregel).“
>
> Ich würde gerne wissen, was „sich gegenseitig
> ausschließenden und den gesamten Ereignisraum
> erschöpfenden Bedingungen“ bedeutet? Weiß das jemand?
Die Ereignisse A1,A2,A3,... sind ja Mengen. (Beim Würfeln ist zum Beispiel das Ereignis [mm] A=\{1,2,3\} [/mm] das Ereignis, dass eine 1,2 oder 3 gewürfelt wird. Wie du siehst, handelt es sich um eine Menge).
Beim Würfel gibt es insgesamt nur 6 Ergebnisse: 1,2,3,4,5,6.
Die Menge [mm] \{1,2,3,4,5,6\} [/mm] heißt dann der Ergebnisraum. Bei dir wird der Raum fälschlicherweise als "Ereignisraum" bezeichnet.
"Sich gegenseitig ausschließend": Die Mengen A1,A2,A3,... sind disjunkt, das heißt je zwei Mengen haben keine gemeinsamen Elemente. Beispiel: $A1 = [mm] \{1,2\}, [/mm] A2 = [mm] \{3,4,6\}, [/mm] A3 = [mm] \{5\}$ [/mm] sind disjunkt.
"Den gesamten Ergebnisraum ausschöpfend" heißt, dass die Vereinigung aller Mengen A1,A2,A3,... den gesamten Ergebnisraum ergibt.
Grüße,
Stefan
|
|
|
|