www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - transp. Matrix = inv. Matrix
transp. Matrix = inv. Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

transp. Matrix = inv. Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:01 Di 19.12.2006
Autor: Knuffy

Aufgabe
aufgabe hab ich hier hochgeladen:

[Dateianhang nicht öffentlich]

huhu, bei den beiden aufgaben hab ich probleme.


man soll ja bei 3a) zeigen dass [mm] $A^{-1}=A^{'}$ [/mm]

ich hab mir erstmal an einem beispiel klar gemacht, dass es normalerweise nicht gilt. dann hab ich mir überlegt, dass [mm] $A^{-1}=A^{'}$ [/mm] nur gilt, wenn A die die Elementarmatrix ist. Das soll man ja beweisen, aber ich weiß nicht wie.

bei 3b) ist es doch auch die elementarmatrix oder?


bei 4) bin ich auch ziemlich ratlos.

wäre schön wenn mir jemand helfen könnte :)


Gruß Knuffy

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
transp. Matrix = inv. Matrix: Transponierte?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:19 Di 19.12.2006
Autor: Bastiane

Hallo Knuffy!

Anhand deine Überschrift vermute ich, dass A' die Transponierte sein soll? Ich glaube, das ist nicht eindeutig definiert, ein A' hatten wir nie und die Transformierte haben wir immer mit [mm] A^T [/mm] bezeichnet...

Viele Grüße
Bastiane
[cap]

Bezug
                
Bezug
transp. Matrix = inv. Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:34 Di 19.12.2006
Autor: Knuffy


> Anhand deine Überschrift vermute ich, dass A' die
> Transponierte sein soll?

genau, A' soll die transponierte matrix sein.

> Ich glaube, das ist nicht
> eindeutig definiert, ein A' hatten wir nie und die
> Transformierte haben wir immer mit [mm]A^T[/mm] bezeichnet...

hm, ist doch egal wie man die transponierte matrix bezeichnet?! in der vorlesung hatten wir immer A' dafür.

mir ist ja klar, dass die transponierte matrix nicht das selbe ist wie die invertierte matrix. aber man soll doch zeigen wann das genau der fall ist. oder nicht?

Bezug
        
Bezug
transp. Matrix = inv. Matrix: zu 3.
Status: (Antwort) fertig Status 
Datum: 21:34 Di 19.12.2006
Autor: angela.h.b.


>  
> http://img120.imageshack.us/img120/1175/lina8rb4.jpg

Hallo,

schreib doch nächstes Mal deine Aufgabe hier hin.
Das ist für den, der sie bearbeitet, viel bequemer, weil man sich per "copy" einiges an Mühe sparen kann.

> man soll ja bei 3a) zeigen dass [mm]A^{-1}=A^{'}[/mm]
>  
> ich hab mir erstmal an einem beispiel klar gemacht, dass es
> normalerweise nicht gilt. dann hab ich mir überlegt, dass
> [mm]A^{-1}=A^{'}[/mm] nur gilt, wenn A die die Elementarmatrix ist.
> Das soll man ja beweisen, aber ich weiß nicht wie.

Nein, das soll man nicht beweisen, wenn ich die Aufgabe nicht völlig falsch verstehe. In a) geht es einfach nur darum, OB bzw. warum unter den gegebenene Voraussetzungen [mm] A^{-1}=A^{'} [/mm] gilt.

Was ist vorausgesetzt? [mm] A'*A=E_n. [/mm]

Nun, wenn es eine Matrix B gibt mit [mm] BA=E_n, [/mm] dann ist B die Inverse zu A.
Also ist A' die Inverse zu A, in Zeichen [mm] A'=A^{-1}. [/mm]

Mehr Geheimnis sehe ich da nicht.


> bei 3b) ist es doch auch die elementarmatrix oder?

Keine Ahnung, was Du meinst.
Nach Voraussetzung ist [mm] A=[a_1,...,a_n] [/mm]

Also ist [mm] A'=\vektor{a^t_1 \\ ... \\ a^t_n} [/mm]

N.V. ist [mm] A'*A=E_n, [/mm]

also [mm] E_n=\vektor{a^t_1 \\ ... \\ a^t_n}[a_1,...,a_n] [/mm]

Bis auf die Diagonale hat man überall Nullen, also ist i-te Zeile*j-te Spalte =0 für [mm] i\not=j [/mm] und
i-te Zeile*j-te Spalte =1 für i=j .

Gruß v. Angela

Bezug
                
Bezug
transp. Matrix = inv. Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:11 Do 21.12.2006
Autor: Knuffy

danke für deine hilfe angela. :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de