www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - trickserei?
trickserei? < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

trickserei?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:33 Mi 16.02.2011
Autor: frank85

Aufgabe
Integrieren Sie:
[mm] \integral_{-1}^{1}{\bruch{x^2}{\wurzel{1-x^2}}dx} [/mm]


Ich habe die Lösung der Aufgabe vorliegen, nur leider weiß ich nicht wie man im einzelnen den trick macht:
[mm] \integral_{-1}^{1}{\bruch{x^2}{\wurzel{1-x^2}}dx} [/mm]
= [mm] \integral_{-1}^{1}{\bruch{x^2+1-1}{\wurzel{1-x^2}}dx} [/mm]
= [mm] \integral_{-1}^{1}{\bruch{1}{\wurzel{1-x^2}}}dx-\integral_{-1}^{1}{\wurzel{1-x^2}}dx [/mm]
ich hoffe ihr könnt mir weiterhelfen!
tausen dank,ehrlich
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
trickserei?: Antwort
Status: (Antwort) fertig Status 
Datum: 09:52 Mi 16.02.2011
Autor: kamaleonti

Hi Frank,

willkommen im Matheraum :-)

> Integrieren Sie:
>  [mm]\integral_{-1}^{1}{\bruch{x^2}{\wurzel{1-x^2}}dx}[/mm]
>  
> Ich habe die Lösung der Aufgabe vorliegen, nur leider
> weiß ich nicht wie man im einzelnen den trick macht:
>  [mm]\integral_{-1}^{1}{\bruch{x^2}{\wurzel{1-x^2}}dx}[/mm]
>  = [mm]\integral_{-1}^{1}{\bruch{x^2+1-1}{\wurzel{1-x^2}}dx}[/mm]

Bisher ist noch nicht viel passiert, nur im Zähler eine Null addiert.
Damit der nächste Schritt deutlicher wird, aber nun noch einen Zwischenschritt:
[mm] \ldots=$\integral_{-1}^{1}\left({\bruch{1}{\wurzel{1-x^2}}-\bruch{1-x^2}{\wurzel{1-x^2}\right)}dx}$ [/mm]
Der Bruch wurde auseinander gezogen. Der zweite Bruch kürzt sich dann zu [mm] $\wurzel{1-x^2}$. [/mm] Das geht nur, weil die kritischen Stellen -1 und 1 die Integrationsgrenzen sind.

>  = [mm]\integral_{-1}^{1}{\bruch{1}{\wurzel{1-x^2}}}dx-\integral_{-1}^{1}{\wurzel{1-x^2}}dx[/mm]
>  ich hoffe ihr könnt mir weiterhelfen!
>  tausen dank,ehrlich

Hoffe, das hilft.

Gruß



Bezug
                
Bezug
trickserei?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:12 Mi 16.02.2011
Autor: frank85

Danke erstmal kamaleonti für die schnelle Antwort!
Von [mm] \integral_{-1}^{1}{\bruch{x^2+1-1}{\wurzel{1-x^2}}dx} [/mm] zu [mm] \integral_{-1}^{1}\left({\bruch{1}{\wurzel{1-x^2}}-\bruch{1-x^2}{\wurzel{1-x^2}\right)}dx} [/mm] verstehe ich nicht. Meiner Meinung nach macht man doch folgende Trennung des Bruchs: [mm] \integral_{-1}^{1}{\bruch{x^2+1-1}{\wurzel{1-x^2}}dx} =\integral_{-1}^{1}\left({\bruch{1}{\wurzel{1-x^2}}-{\bruch{1+x^2}{\wurzel{1-x^2}}\right)dx}} [/mm]
und [mm] \bruch{1+x^2}{\wurzel{1-x^2}} \not= \bruch{1-x^2}{\wurzel{1-x^2}} [/mm] ?!!

Bezug
                        
Bezug
trickserei?: Antwort
Status: (Antwort) fertig Status 
Datum: 10:18 Mi 16.02.2011
Autor: kamaleonti

Hallo,
> Danke erstmal kamaleonti für die schnelle Antwort!

Bitte ;-)

>  Von [mm]\integral_{-1}^{1}{\bruch{x^2+1-1}{\wurzel{1-x^2}}dx}[/mm]  zu [mm]\integral_{-1}^{1}\left({\bruch{1}{\wurzel{1-x^2}}-\bruch{1-x^2}{\wurzel{1-x^2}\right)}dx}[/mm]
> verstehe ich nicht. Meiner Meinung nach macht man doch folgende Trennung des Bruchs:
> [mm]\integral_{-1}^{1}{\bruch{x^2+1-1}{\wurzel{1-x^2}}dx} =\integral_{-1}^{1}\left({\bruch{1}{\wurzel{1-x^2}}-{\bruch{1+x^2}{\wurzel{1-x^2}}\right)dx}}[/mm]
>  
> und [mm]\bruch{1+x^2}{\wurzel{1-x^2}} \not= \bruch{1-x^2}{\wurzel{1-x^2}}[/mm]
> ?!!

Nein, schauen wir uns mal nur den Zähler an (um den geht es hier im Wesentlichen):
Es gilt
[mm] $x^2+1-1=1+(x^2-1)=1-(-x^2+1)=1-(1-x^2) [/mm]
nach dem zweiten "=" wurde der Inhalt der Klammer mit -1 multipliziert, dafür wird sie nun subtrahiert.

Siehst du es jetzt?

Gruß

Bezug
                                
Bezug
trickserei?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:30 Mi 16.02.2011
Autor: frank85


> Siehst du es jetzt?

Jap,jetzt hab ichs...endlich.
Finde es unheimlich dreist die Aufgabenlösung so sehr abzukürzen, dass man gar nicht mehr nachvollziehen kann wie dieser Trick läuft.
Danke dir kamaleonti, bist super :)

Frank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de