www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Überdeckung
Überdeckung < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Überdeckung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:08 Mi 13.07.2011
Autor: burk

hallo,

ich suche ein Beispiel einer offene Überdeckung eines offenen Quaders im [mm] R^2 [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Gruß

Georg

        
Bezug
Überdeckung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:35 Mi 13.07.2011
Autor: fred97


> hallo,
>  
> ich suche ein Beispiel einer offene Überdeckung eines
> offenen Quaders im [mm]R^2[/mm]


Ist Q ein offener Quader im [mm] \IR^2, [/mm] so ist [mm] \{Q\} [/mm] eine offene Überdeckung von Q (oder [mm] \{\IR^2\} [/mm] oder [mm] \{Q, \IR^2\} [/mm] oder ....)

FRED

>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt
>  
> Gruß
>  
> Georg


Bezug
                
Bezug
Überdeckung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:19 Mi 13.07.2011
Autor: burk

Hallo Fred, danke für deine Hilfe.

Könntest du bitte an einem Beispiel zeigen, wie man einen offenen Quader im [mm] R^2 [/mm] mit einer Folge von offenen Teilquadern überdecken kannn

Mich interessiert vor allem die Formel für die Folge

Schöne Grüße

Georg

Bezug
                        
Bezug
Überdeckung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:30 Mi 13.07.2011
Autor: statler

Hallo,
ich gönne mir mal die Antwort:
Wenn Q der offene Quader ist, ist Q, Q, Q, ... die überdeckende Folge. Ist ja nicht schwer. Kann es sein, daß du eine Überdeckung suchst, die keine endliche Teilüberdeckung enthält? Das geht auch.
Für das Intervall (0, 1) wäre das die Folge (1/n, 1-(1/n)). Das müßtest du jetzt auf die Ebene umsetzen.
Gruß aus HH-Harburg
Dieter

Bezug
                                
Bezug
Überdeckung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:48 Mi 13.07.2011
Autor: burk

Hallo Dieter,

danke für die Hilfe.

Könntest du bitte deine Erläuterungen für die Ebene umsetzen, das wäre nett.

Schöne Grüße

Georg

Bezug
                                        
Bezug
Überdeckung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:02 Mi 13.07.2011
Autor: fred97


> Hallo Dieter,
>  
> danke für die Hilfe.
>  
> Könntest du bitte deine Erläuterungen für die Ebene
> umsetzen, das wäre nett.

Du mußt doch nur "kreuzen" !!!

Sei $Q:=(0,1) [mm] \times [/mm] (0,1)$

Setze [mm] $Q_n:= (\bruch{1}{n}, 1-\bruch{1}{n}) \times (\bruch{1}{n}, 1-\bruch{1}{n})$ [/mm]

Dann ist

                  [mm] $Q=\bigcup_{n=1}^{\infty}Q_n$ [/mm]

FRED

>  
> Schöne Grüße
>  
> Georg


Bezug
                                                
Bezug
Überdeckung: Bemerkung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:16 Mi 13.07.2011
Autor: statler

Hallo!

> Dann ist
>
> [mm]Q=\bigcup_{n=1}^{\infty}Q_n[/mm]

Um Diskussionen auszuweichen, schlage ich vor, mit n = 3 anzufangen. Andernfalls hätte man (nach meinem Verständnis) zweimal die leere Menge dastehen.

Gruß
Dieter


Bezug
                                                        
Bezug
Überdeckung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:45 Mi 13.07.2011
Autor: fred97


> Hallo!
>  
> > Dann ist
> >
> > [mm]Q=\bigcup_{n=1}^{\infty}Q_n[/mm]
>  
> Um Diskussionen auszuweichen, schlage ich vor, mit n = 3
> anzufangen. Andernfalls hätte man (nach meinem
> Verständnis) zweimal die leere Menge dastehen.

Hallo Dieter,

   .. die leere Menge ist offen ...

FRED

>  
> Gruß
>  Dieter
>  


Bezug
                                                                
Bezug
Überdeckung: Schon, ...
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:57 Mi 13.07.2011
Autor: statler

... aber ist auch wirklich jedem Leser klar, daß das Intervall (1, 0) die leere Menge meint? Da wollte ich mich auf die völlig sichere Seite begeben.

Gruß aus dem Norden
Dieter

Bezug
                                                
Bezug
Überdeckung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:37 Mi 13.07.2011
Autor: burk

Hallo Fred,

vielen Dank für deine Hilfe, Super!

Schöne Grüße

Georg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de