www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - unbestimmte Integrale
unbestimmte Integrale < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

unbestimmte Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:23 Fr 01.02.2013
Autor: silfide

Aufgabe
Bestimmen Sie folgende unbestimmte Integrale

iv.  [mm] \integral {x^{2}*e^{-x}^{2} dx} [/mm]

Hey Leute,

ich kriegs nicht hin. Kann es jemand erklaeren?!
Soweit bin ich schon:

Mit partieller Integration
[mm] u'=x^{2}, [/mm] u=1/3 [mm] x^{3}, v=e^{-x}^{2}, v'=e^{-x}^{2}*-2x [/mm]

[mm] \integral {x^{2}*e^{-x}^{2} dx}=e^{-x}^{2}*1/3 x^{3}-\integral {e^{-x}^{2}*-2x*1/3 x^{3} dx} [/mm]

nochmalige partielle Integration ergibt
[mm] =e^{-x}^{2}*1/3 x^{3}-((-2/3)*(e^{-x}^{2})*4x^{3}-\integral {e^{-x}^{2}*-2x*4x^{3} dx}) [/mm]


Ich sehe da auch nicht wirklich ein Ende in Sicht. Gibt es da einen Trick? Oder habe ich einen Fehler eingebaut?


Silfide


        
Bezug
unbestimmte Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 12:31 Fr 01.02.2013
Autor: Al-Chwarizmi


> Bestimmen Sie folgende unbestimmte Integrale
>  
> iv.  [mm]\integral {x^{2}*e^{-x}^{2} dx}[/mm]
>  Hey Leute,
>  
> ich kriegs nicht hin. Kann es jemand erklaeren?!
>  Soweit bin ich schon:
>  
> Mit partieller Integration
>  [mm]u'=x^{2},[/mm] u=1/3 [mm]x^{3}, v=e^{-x}^{2}, v'=e^{-x}^{2}*-2x[/mm]
>  
> [mm]\integral {x^{2}*e^{-x}^{2} dx}=e^{-x}^{2}*1/3 x^{3}-\integral {e^{-x}^{2}*-2x*1/3 x^{3} dx}[/mm]
>  
> nochmalige partielle Integration ergibt
>  [mm]=e^{-x}^{2}*1/3 x^{3}-((-2/3)*(e^{-x}^{2})*4x^{3}-\integral {e^{-x}^{2}*-2x*4x^{3} dx})[/mm]
>  
>
> Ich sehe da auch nicht wirklich ein Ende in Sicht. Gibt es
> da einen Trick? Oder habe ich einen Fehler eingebaut?
>  
>
> Silfide


Hi Silfide,

partielle Integration führt da nicht weiter, ebenso wie
andere übliche Integrationsmethoden. Das Integral
ist nicht mit elementaren Methoden durchführbar.

LG ,   Al-Chwarizmi  


Bezug
                
Bezug
unbestimmte Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:37 Fr 01.02.2013
Autor: silfide

Hallo,

und wie kann ich dann diese Aufgabe loesen??

Silfide

Bezug
                        
Bezug
unbestimmte Integrale: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:43 Fr 01.02.2013
Autor: Diophant

Hallo,

EDIT:
hier stand Unsinn. Es geht tatsächlich nicht.


Gruß, Diophant

Bezug
                                
Bezug
unbestimmte Integrale: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:47 Fr 01.02.2013
Autor: schachuzipus

Hallo Diophant,


> Hallo,
>  
> zunächst muss ich hier unserem arabischen Rechenmeister
> :-) widersprechen. Man kann es lösen. Gehe so vor:
>  
> [mm]\integral{x^2*e^{-x^2} dx}=\integral{x*x*e^{-x^2} dx}[/mm]
>  
> Setze nun
>  
> [mm]u'=x*e^{-x^2}[/mm]
>  
> v=x
>  
> dann funktioniert es über eine Kombination aus partieller
> Integration und Substitution (die brauchst du um von u'
> nach u zu kommen).

Wie integrierst du denn dann das verbleibende Integral [mm] $\int{u(x)v'(x) \ dx}$ [/mm] ?

>  
>
> Gruß, Diophant


Gruß

schachuzipus


Bezug
                                        
Bezug
unbestimmte Integrale: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:43 Fr 01.02.2013
Autor: Diophant

Hallo schachuzipus,

> Hallo Diophant,
>
>
> > Hallo,
> >
> > zunächst muss ich hier unserem arabischen Rechenmeister
> > :-) widersprechen. Man kann es lösen. Gehe so vor:
> >
> > [mm]\integral{x^2*e^{-x^2} dx}=\integral{x*x*e^{-x^2} dx}[/mm]
> >
> > Setze nun
> >
> > [mm]u'=x*e^{-x^2}[/mm]
> >
> > v=x
> >
> > dann funktioniert es über eine Kombination aus partieller
> > Integration und Substitution (die brauchst du um von u'
> > nach u zu kommen).
>
> Wie integrierst du denn dann das verbleibende Integral
> [mm]\int{u(x)v'(x) \ dx}[/mm] ?

Jo, ich habs ja dann auch gesehen. Aber Danke für den Hinweis.


Gruß, Diophant

Bezug
                        
Bezug
unbestimmte Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 12:53 Fr 01.02.2013
Autor: Gonozal_IX

Hiho,

> und wie kann ich dann diese Aufgabe loesen??

gar nicht :-)
Entweder du hast die Aufgabe hier falsch wiedergegeben, oder der Aufgabensteller hats verbockt.

Gruß,
Gono.

Bezug
                                
Bezug
unbestimmte Integrale: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:07 Fr 01.02.2013
Autor: silfide

Hallo Gono, nee die steht tatsaechlich so auf den blatt.

Bezug
        
Bezug
unbestimmte Integrale: was ist "elementar" ?
Status: (Antwort) fertig Status 
Datum: 18:40 Fr 01.02.2013
Autor: Al-Chwarizmi

Hallo Silfide ,


es kommt natürlich darauf an, was man als "elementare"
Integrationen bezeichnen will.

Mathematica liefert auf diese Integration

       [mm] Integrate[x^2*e^{-x^2}, [/mm] x]

das Ergebnis:

     $\ [mm] -\frac{1}{2}*\ e^{-x^2}* [/mm] x + [mm] \frac{1}{4} \sqrt{\pi}*\ [/mm] Erf(x)$

Dies sieht zwar nach "geschlossener Form" aus - aber
gewöhnlicherweise zählt man die Funktion Erf mit

    [mm] $\operatorname{Erf}(z) [/mm] = [mm] \frac 2{\sqrt\pi} \int_0^z e^{-\tau^2}\,\mathrm d\tau\ [/mm] \ \ [mm] (z\in\mathbb{C})$ [/mm]

welche also selbst nur durch ein anderweitig nicht
durchführbares Integral definiert ist, eben nicht
zu den "elementaren" Funktionen.

LG ,   Al-Chwarizmi


  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de