www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - unbestimmtes Integral
unbestimmtes Integral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

unbestimmtes Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:18 So 08.11.2009
Autor: seamus321

Aufgabe
Berechnen Sie das unbestimmte Integral folgender Funktion:

[mm] \bruch{1}{cos(x)+sin(x)} [/mm]

Hallo Leute, ich sitze jetzt schon seit ner weile an dieser Aufgabe rum und komme nicht weiter.

Meine Idee war über Substitution zum Endergebniss zu kommen mit
z=tan( [mm] \bruch{x}{2} [/mm] )

dann hab ich erstmal gezeigt bzw bewiesen das dx= [mm] \bruch{2dz}{1+z^{2}} [/mm] ist, sin(x)= [mm] \bruch{2z}{1+z} [/mm] und [mm] cos(x)=\bruch{1-z^{2}}{1+z^{2}} [/mm]  

ich hoffe erstmal das das richtig ist?!

das ganze dann substituiert in die gegebene Gleichung kommt dann das dabei raus...

[mm] \integral_{}^{}\bruch{1}{\bruch{1-z^{2}}{1+z^{2}} + \bruch{2z}{1+z}} [/mm] * [mm] \bruch{2dz}{1+z^{2}} [/mm]

ich bin aber irgendwie grad unfähig das umzuformen... kann mir da jemand eventuell weiter helfen oder eine andere Methode zeigen?

wär nett wenn ihr mir weiter helft!

Lg Seamus

        
Bezug
unbestimmtes Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 17:24 So 08.11.2009
Autor: koepper

Hallo,

bring mal die Bruchsumme im Nenner auf einen Hauptnenner (einfach multiplizieren) und führe danach das 1 / aus.
Dann kannst du mit dem dahinterstehenden Faktor kürzen. Es ergibt sich ein gebrochen rat. Term, den man mit der Partialbruchzerlegung weiter bearbeiten kann.

LG
Will

Bezug
                
Bezug
unbestimmtes Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:01 So 08.11.2009
Autor: seamus321

Also hier erstmal die Umformung wie oben beschrieben

[mm] \integral_{ }^{ }{\bruch{(1+z)dz}{(1-z^{2})(1+z)+2z(1+z^{2})}} [/mm]

aber müsste für Partialbruchzerlegung nicht im Nenner ein Produkt stehen und nicht wie hier eine Summe?


lg Seamus

Bezug
                        
Bezug
unbestimmtes Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 18:14 So 08.11.2009
Autor: MathePower

Hallo seamus321,

> Also hier erstmal die Umformung wie oben beschrieben
>  
> [mm]\integral_{ }^{ }{\bruch{(1+z)dz}{(1-z^{2})(1+z)+2z(1+z^{2})}}[/mm]
>  
> aber müsste für Partialbruchzerlegung nicht im Nenner ein
> Produkt stehen und nicht wie hier eine Summe?
>  


Multipliziere die Summe im Nenner aus,
dann erhältst Du ein Polynom 3. Grades.

Von diesem Polynom bestimmst Du dann die Nullstellen.

Dann kannst Du den Ansatz entsprechend der Nullstellen wählen.


>
> lg Seamus


Gruss
MathePower

Bezug
                                
Bezug
unbestimmtes Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:51 So 08.11.2009
Autor: seamus321

War ne gute Idee nur hab ich grad an den Nullstellen gesessen und erstmal keine gefunden...

ein Mathe Programm hat mir dann diese ausgerechnet:
  x  = -0,2955977425220848
    1
   x  = 0,6477988712610423 - 1,7214332372471368·î
    2
   x  = 0,6477988712610423 + 1,7214332372471368·î
    3

und das ist leider auch nicht das wahre -.-

hat noch jemand andere Ideen oder Vorschläge? oder hab ich früher schon einen Fehler gemacht?

Lg Seamus

Bezug
                                        
Bezug
unbestimmtes Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 19:28 So 08.11.2009
Autor: MathePower

Hallo seamus321,

> War ne gute Idee nur hab ich grad an den Nullstellen
> gesessen und erstmal keine gefunden...
>  
> ein Mathe Programm hat mir dann diese ausgerechnet:
>    x  = -0,2955977425220848
>      1
>     x  = 0,6477988712610423 - 1,7214332372471368·î
>      2
>     x  = 0,6477988712610423 + 1,7214332372471368·î
>      3
>  
> und das ist leider auch nicht das wahre -.-
>  
> hat noch jemand andere Ideen oder Vorschläge? oder hab ich
> früher schon einen Fehler gemacht?


Ja,  der Nenner des Integranden stimmt nicht.

[mm]\integral_{}^{}{\bruch{1}{\bruch{2*z}{1+z^{2}}+\bruch{1-z^{2}}{1+z^{2}}} * \bruch{2}{1+z^{2}}\ dz}=\integral_{}^{}{\bruch{2}{2*z+1-z^{2}} \ dz}[/mm]


>  
> Lg Seamus


Gruss
MathePower

Bezug
                                                
Bezug
unbestimmtes Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:56 So 08.11.2009
Autor: seamus321

ohhhh mann... Ich danke dir vielmals!!! habs grad auch auf meiner Zettelwirtschaft entdeckt das sin(x) natürlich [mm] \bruch{2z}{1+z^{2}} [/mm] sein muss... dann werd ich mich nochmal dran setzen aber jetzt bekomm ich bestimmt auch das richtige raus...

lg Seamus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de