www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - uneigentliche Integrale
uneigentliche Integrale < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

uneigentliche Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:04 Mi 02.02.2011
Autor: David90

Aufgabe
Existiert folgendes uneigentliches Intagral?Bestimme gegebenfalls dessen Wert.
[mm] \integral_{0}^{2}{\bruch{dx}{x^2-1}} [/mm]

Hallo, wollte versuchen die Aufgabe zu lösen, komm aber irgendwie nicht weiter:(
Dachte da könnte man mit Substitution rangehen, aber das klappt nicht. Habe [mm] t=x^2-1 [/mm] gesetzt also is t'=2x und [mm] x*dx=\bruch{1}{2}*dt [/mm] aber ich kann ja x*dx nicht einsetzen weil x*dx gibts ja nich:(
Wär für einen Denkanstoß echt dankbar^^
Gruß David

        
Bezug
uneigentliche Integrale: Partialbruchzerlegung
Status: (Antwort) fertig Status 
Datum: 00:07 Mi 02.02.2011
Autor: Loddar

Hallo David!


Hier führt eine MBPartialbruchzerlegung zum Ziel. Es gilt:

[mm]\bruch{1}{x^2-1} \ = \ \bruch{1}{(x-1)*(x+1)} \ = \ \bruch{A}{x-1}+\bruch{B}{x+1}[/mm]


Gruß
Loddar


Bezug
                
Bezug
uneigentliche Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:23 Mi 02.02.2011
Autor: David90

Ok alles klar^^
dann hab ich beide Seiten mit (x-1)(x+1) multipliziert und komme auf 1=A(x+1)+B(x-1), ausmultipliziert und nach Koeffizienten geordnet ist das 1=x(A+B)+A-B also hat man die erste Gleichung: 0=A+B und 1=A-B und dann kommt man auf [mm] A=\bruch{1}{2} [/mm] und [mm] B=-\bruch{1}{2}. [/mm] Dann steht da: [mm] \bruch{1}{(x+1)(x-1)}= \bruch{1}{2x-2}-\bruch{1}{2x+2} [/mm]
Jetzt bildet man einfach ein Stammfunktion oder? Das wär ja dann ln|2x-2|-ln|2x+2| oder? Wenn man die Grenzen einsetzt kommt man auf ln2-ln2, also 0. Müsste stimmen oder?^^
Gruß David


Bezug
                        
Bezug
uneigentliche Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 01:11 Mi 02.02.2011
Autor: leduart

Hallo
wie hast du denn die Grenzen gewählt*  der kritische wert liegt doch bei x=1? also da, wo der Integrand gegen [mm] \infty [/mm] geht?
Gruss leduart


Bezug
                                
Bezug
uneigentliche Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:35 Do 03.02.2011
Autor: David90

Achso du meinst ich soll das Integral teilen und einmal die Grenzen 0-1 und dann 1-2 wählen oder was?^^

Bezug
                                        
Bezug
uneigentliche Integrale: richtig erkannt
Status: (Antwort) fertig Status 
Datum: 11:37 Do 03.02.2011
Autor: Loddar

Hallo David!


Genau. [ok]


Gruß
Loddar


Bezug
                                                
Bezug
uneigentliche Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:17 Fr 04.02.2011
Autor: David90

Achso alles klar^^ naja die PBZ müsste ja stimmen denk ich mal. Also heißt es [mm] \integral_{0}^{1}{\bruch{1}{2x-2}-\bruch{1}{2x+2} dx}+\integral_{1}^{2}{\bruch{1}{2x-2}-\bruch{1}{2x+2} dx}, [/mm] davon dann eine Stammfunktion is ja ln|2x-2|-ln|2x+2| aber wenn man jetzt die Grenzen einsetzt staht ja ln0 und das ist ja nicht definiert :O

Bezug
                                                        
Bezug
uneigentliche Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 11:56 Fr 04.02.2011
Autor: leduart

Hallo
also musst du wieder nicht die grenze 1 einsetzen, sondern a und dann a gegen 1
gruss leduart


Bezug
                                                                
Bezug
uneigentliche Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:33 Fr 04.02.2011
Autor: David90

Achso dann muss es wohl eher so heißen: [mm] \limes_{a\rightarrow1}\integral_{0}^{a}{\bruch{1}{2x-2}-\bruch{1}{2x+2} dx}+ \limes_{a\rightarrow1}\integral_{a}^{2}{\bruch{1}{2x-2}-\bruch{1}{2x+2} dx} [/mm] und das ist dann [mm] \limes_{a\rightarrow1}ln|2x-2|+\limes_{a\rightarrow1}ln|2x+2|. [/mm] Dann setz ich die Grenzen ein und komm auf ln|2a-2|-ln|2a+2|-ln2+ln2+ln2-ln6-ln|2a-2|+ln|2a+2| und dann wär dann [mm] \limes_{a\rightarrow1}ln2-ln6 [/mm] :O Muss der Limes, obwohl keina mehr drin ist trotzdem davor?

Bezug
                                                                        
Bezug
uneigentliche Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 12:45 Fr 04.02.2011
Autor: leduart

Hallo
deine Integrale haben noch nen Fehler. am besten zieh aus allen zuerst den Faktor 1/2 raus und integrier dann, aber sonst ist das vorgehen richtig. Sobald du den lim gebildet hast kannst du ihn natürlich weglassen,
Gruss leduart


Bezug
                                                                                
Bezug
uneigentliche Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:30 Sa 05.02.2011
Autor: David90

Ok dann hab ich jetzt das [mm] \bruch{1}{2} [/mm] rausgezogen und dann steht da [mm] \limes_{a\rightarrow1}\bruch{1}{2}\integral_{0}^{a}\bruch{1}{x-1}-\bruch{1}{x+1}+\limes_{a\rightarrow1}\bruch{1}{2}\integral_{a}^{2}{\bruch{1}{x-1}-\bruch{1}{x+1} dx}. [/mm] Wenn ich nun die Grenzen einsetze komme ich auf: [mm] \limes_{a\rightarrow1} \bruch{1}{2}ln|a-1|-\bruch{1}{2}ln|a+1|-\bruch{1}{2}ln3-\bruch{1}{2}ln|a-1|+\bruch{1}{2}ln|a+1| [/mm] und das sind dann [mm] -\bruch{1}{2}ln3 [/mm] wenn ich mich nicht irre:)

Bezug
                                                                                        
Bezug
uneigentliche Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 12:56 Sa 05.02.2011
Autor: MathePower

Hallo David90,

> Ok dann hab ich jetzt das [mm]\bruch{1}{2}[/mm] rausgezogen und dann
> steht da
> [mm]\limes_{a\rightarrow1}\bruch{1}{2}\integral_{0}^{a}\bruch{1}{x-1}-\bruch{1}{x+1}+\limes_{a\rightarrow1}\bruch{1}{2}\integral_{a}^{2}{\bruch{1}{x-1}-\bruch{1}{x+1} dx}.[/mm]
> Wenn ich nun die Grenzen einsetze komme ich auf:
> [mm]\limes_{a\rightarrow1} \bruch{1}{2}ln|a-1|-\bruch{1}{2}ln|a+1|-\bruch{1}{2}ln3-\bruch{1}{2}ln|a-1|+\bruch{1}{2}ln|a+1|[/mm]
> und das sind dann [mm]-\bruch{1}{2}ln3[/mm] wenn ich mich nicht
> irre:)


Ja, das stimmt. [ok]


Gruss
MathePower

Bezug
                                                                                                
Bezug
uneigentliche Integrale: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:59 Sa 05.02.2011
Autor: David90

Super:) danke dir/euch ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de