www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - uneigentliches Integral
uneigentliches Integral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

uneigentliches Integral: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:19 Di 26.04.2011
Autor: pyw

Aufgabe 1
Für welche Parameter t existiert das uneigentliche Integral
[mm] \integral_1^{\infty}\frac{\ln x}{(x^2+1)^t}dx [/mm]

Aufgabe 2
Berechnen Sie:
[mm] \integral_0^{\infty}\frac{\ln x}{(x^2+1)}dx [/mm]
(hier ist t=1)

Hallo,

erstmal zu Aufgabe 1: hier vermute ich, dass das uneigentliche Integral für [mm] t\geq1 [/mm] existiert. Stimmt das? Wie kann ich das zeigen?
Ich habe versucht, dass Integral aufzulösen, aber es ist mir leider nicht gelungen...
[mm] \lim_{k\to\infty} \integral_1^{k}\frac{\ln x}{(x^2+1)^t}dx=? [/mm]

Bitte um Hilfe. Danke im Voraus!

mfg,
pyw

        
Bezug
uneigentliches Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 12:50 Di 26.04.2011
Autor: Leopold_Gast

Wie wäre es bei der zweiten Aufgabe mit der Substitution [mm]x = \frac{1}{t}[/mm] im Integral

[mm]\int_1^{\infty} \frac{\ln x}{x^2 + 1}~\mathrm{d}x[/mm]

Bezug
                
Bezug
uneigentliches Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:06 Di 26.04.2011
Autor: pyw

Hallo,
danke für die Antwort.

> Wie wäre es bei der zweiten Aufgabe mit der Substitution [mm]x = \frac{1}{t}[/mm]
> im Integral [mm]\int_1^{\infty} \frac{\ln x}{x^2 + 1}~\mathrm{d}x[/mm]

Da kommt das gleiche Integral raus, allerdings mit anderen Grenzen:

[mm] \int_1^{\infty} \frac{\ln x}{x^2 + 1}~\mathrm{d}x=\int_1^{0} \frac{\ln t}{t^2 + 1}~\mathrm{d}t [/mm]

Es folgt [mm] \int_0^{\infty} \frac{\ln x}{x^2 + 1}~\mathrm{d}x=0 [/mm]

Weiß jemand bei der ersten Aufgabe weiter?Danke!

mfg, pyw

Bezug
                        
Bezug
uneigentliches Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 17:22 Di 26.04.2011
Autor: leduart

Hallo
zu a du kannst das integral nicht explizit lösen. also musst du majoranten bzw minoranten finden. [mm] t\ge1 [/mm] ist falsch. es gilt [mm] t\ge0.5 [/mm]

gruss leduart


Bezug
                                
Bezug
uneigentliches Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:54 Mi 04.05.2011
Autor: pyw


> Hallo
>  zu a du kannst das integral nicht explizit lösen. also
> musst du majoranten bzw minoranten finden. [mm]t\ge1[/mm] ist
> falsch. es gilt [mm]t\ge0.5[/mm]
>  
> gruss leduart
>  

Ok, danke euch! Ich komme nun auf t>0.5 :-)

mfg, pyw

Bezug
                        
Bezug
uneigentliches Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 20:06 Di 26.04.2011
Autor: kamaleonti

Moin,
> Weiß jemand bei der ersten Aufgabe weiter?Danke!

Das Integralkriterium für Reihenkonvergenz sollte hier ganz gut helfen:
[mm] \qquad $\sum_{k=1}^\infty f(k)<\infty \gdw \integral_1^\infty f(x)dx<\infty$ [/mm]

mit [mm] f(x)=\frac{\ln x}{(x^2+1)^t} [/mm]

>  
> mfg, pyw

LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de