www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - uneigentliches integr
uneigentliches integr < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

uneigentliches integr: existenz
Status: (Frage) beantwortet Status 
Datum: 19:01 Do 28.07.2011
Autor: w3rk3rhund

Aufgabe
exisitert das integral von minus unendlich bis plus unendlich über 1/(1 + [mm] x^4) [/mm]

hi,
also mir ist bekannt, dass das integral existiert, da [mm] x^2 [/mm] * f(x) beschränkt ist (wobei f(x) hierbei die innere funktion aus dem integral ist)
allerdings halte ich die begründung nicht für ausreichend genau, und würde daher lieber das majorantenkriterium benutzen.
das integral ex. also, wenn eine konvergente majorante für f ex.
sei [mm] 1/x^4 [/mm] diese majorante. dann ist mir klar, dass das integral für |x| >= 1 existiert (kann ich ne stammfunktion angeben etc)
wie aber krieg ich das für |x| < 1 hin??

        
Bezug
uneigentliches integr: Antwort
Status: (Antwort) fertig Status 
Datum: 19:05 Do 28.07.2011
Autor: Diophant

Hallo,

würde es nicht ausreichen, für |x|> 1 mit dem Majorantenkriterium zu argumentieren und dazwischen einfach mit der Stetigkeit von f?

Gruß, Diophant

Bezug
                
Bezug
uneigentliches integr: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:12 Fr 29.07.2011
Autor: w3rk3rhund

naja, klingt in meinen ohren ganz plausibel... danke!

Bezug
                        
Bezug
uneigentliches integr: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:16 Fr 29.07.2011
Autor: w3rk3rhund

aber wenn ich zb das integral über 1/(x+1) nehme,
ist 1/x die majorante aber haut im punkt 0 unstetig gegen unendlich ab...

Bezug
                                
Bezug
uneigentliches integr: Antwort
Status: (Antwort) fertig Status 
Datum: 13:21 Fr 29.07.2011
Autor: Teufel

Hi!

[mm] \frac{1}{x+1} [/mm] ist auch ein schlechtes Beispiel, eben weil es nicht auf ganz [mm] \IR [/mm] definiert ist. Aber denke mal z.B. bei deiner gegebenen Funktion an die Funktion [mm] \frac{1}{1+x^2}. [/mm] Von der kennst du die Stammfunktion (und auch damit den Wert des uneigentlichen Integrals von [mm] -\infty [/mm] bis [mm] \infty). [/mm]

Bezug
        
Bezug
uneigentliches integr: Antwort
Status: (Antwort) fertig Status 
Datum: 14:02 Fr 29.07.2011
Autor: Al-Chwarizmi


> exisitert das integral von minus unendlich bis plus
> unendlich über 1/(1 + [mm]x^4)[/mm]
>  hi,
>  also mir ist bekannt, dass das integral existiert, da [mm]x^2[/mm]
> * f(x) beschränkt ist (wobei f(x) hierbei die innere
> funktion aus dem integral ist)
>  allerdings halte ich die begründung nicht für
> ausreichend genau, und würde daher lieber das
> majorantenkriterium benutzen.
>  das integral ex. also, wenn eine konvergente majorante
> für f ex.
>  sei [mm]1/x^4[/mm] diese majorante. dann ist mir klar, dass das
> integral für |x| >= 1 existiert (kann ich ne stammfunktion
> angeben etc)
>  wie aber krieg ich das für |x| < 1 hin??


Hallo,

für |x| < 1 (und sowieso für alle x)  ist doch  $\ [mm] \left|\frac{1}{1+x^4}\right|\ \le\ [/mm] 1$    

LG


Bezug
                
Bezug
uneigentliches integr: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:18 Fr 29.07.2011
Autor: w3rk3rhund

hm ja aber wenn ich das sauber notieren will mit dem majorantenkriterium, geht das dann auch. oder soll ich dann f(x) = 2 als alibi majorante nehmen?

Bezug
                        
Bezug
uneigentliches integr: Antwort
Status: (Antwort) fertig Status 
Datum: 14:27 Fr 29.07.2011
Autor: Al-Chwarizmi


> hm ja aber wenn ich das sauber notieren will mit dem
> majorantenkriterium, geht das dann auch. oder soll ich dann
> f(x) = 2 als alibi majorante nehmen?

Was heißt da Alibi ?

Setze doch

    $M(x)\ =\ [mm] \mbox{\Large{ \begin{cases} 1 & (|x|<1) \\ \frac{1}{x^4} & (|x|\ge1) \end{cases}}}$ [/mm]

LG   Al-Chw.


Bezug
                                
Bezug
uneigentliches integr: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:46 Fr 29.07.2011
Autor: w3rk3rhund

muss man fürs majorantenkriterium nicht eine einzige stetige majorante angeben, die für alles x konvergiert und nicht eine abschnittsweise definierte funktion?

Bezug
                                        
Bezug
uneigentliches integr: Antwort
Status: (Antwort) fertig Status 
Datum: 16:03 Fr 29.07.2011
Autor: MathePower

Hallo w3rk3rhund,

> muss man fürs majorantenkriterium nicht eine einzige
> stetige majorante angeben, die für alles x konvergiert und
> nicht eine abschnittsweise definierte funktion?


Du kannst sehr wohl als Majorante eine
abschnittsweise definierte Funktion angeben.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de