www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - unendliche viele Zahlen finden
unendliche viele Zahlen finden < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

unendliche viele Zahlen finden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:26 Mi 24.04.2013
Autor: TheBozz-mismo

Aufgabe
Zeigen Sie:
a) Es gibt unendlich viele Zahlen [mm] n\in \IN, [/mm] sodass [mm] \mu (n)+\mu(n+1)=0 [/mm]
b) Es gibt unendlich viele Zahlen [mm] n\in \IN, [/mm] sodass [mm] \mu (n)+\mu(n+1)=-1 [/mm]

Hallo!
Ich habe Probleme bei dieser Aufgabe.
Also [mm] \mu [/mm] ist ja die sogenante Möbiusfunktion und die haben wir folgendermaßen defininiert: 1, wenn n=1, 0, wenn n nicht quadratfrei ist und [mm] (-1)^r, [/mm] wenn n das Produkt von r versch. Primzahlen.

Also zu b) hatte ich mir folgendes überlegt. Für alle Primzahlen ergibt die Möbiusfunktion den Wert -1, somit müsste [mm] \mu [/mm] (p+1) =0 sein, aber leider trifft dies nicht zu für p=5, denn p+1 ist 6 und [mm] \mu(6)=1. [/mm] Ich hatte gedacht, dass alle primzahlen die Gleichung erfüllen und wir haben gezeigt, dass es unendlich viele Primzahlen gibt, aber leider stimmt dies nicht. Vielleicht muss man sich bestimmte Primzahlen heraussuchen. Hat einer ne Idee?

Zu a) habe ich eigentlich keine Idee. Im Prinzip kann man ja ne unendliche Zahlenfolge angeben. ich bin mal die ersten 20 Zahlen durchgegangen, welche die Gleichung erfüllen  und bin auf folgende Zahlen gekommen:
1,5,6,8,10,13. Leider erkenne ich keine Regelmäßigkeit, sodass ich eine allgemeine Zahlenfolge angeben könnte.
Hat einer ne Idee zu beiden Aufgaben?

Mit feundlichem Gruß

TheBozz-mismo

Vielen Dank schonmal

        
Bezug
unendliche viele Zahlen finden: Antwort
Status: (Antwort) fertig Status 
Datum: 01:53 Do 25.04.2013
Autor: sometree

Hallo TheBozz-mismo,

Idee zur a)
Suche n, n-1 die jeweils nicht quadratfrei sind.
n ein Quadrat wär ein Anfang.

zur b)
n prim ist eine gute Idee. Das mit spezielllen Primzahlen auch.
Gibt es Primzahlen mit n+1 quadratbehaftet?

Anmerkungen zu deiner Idee für a)
Die ersten 20 Werte zu überprüfen ist ein bisschen wenig um irgendeine Aussage treffen zu können. Außerdem ist nicht nach einer Aufzählung aller n mit der gewünschten Eigenschaft gefragt, sondern nach einer leicht hinzuschreiben unendlich großen Teilmenge davon. Wenn blöd läuft sind in deiner Beispielmenge gar keine in dieser Teilmenge.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de