www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - universelle eigenschaft
universelle eigenschaft < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

universelle eigenschaft: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:40 Mo 01.02.2010
Autor: pumpernickel

gibt es eine universelle eigenschaft fuer das tensorprodukt von koerpern?
ich weiss ,dass es eine fuer tensorprodukt von moduln,r-algebren und vektorrauemen gibt.ich wollte damit die isomorphie von zwei koerpern zeigen


[mm] \overline{K} \otimes [/mm] L [mm] \cong \overline{K}^{n} [/mm]

(meine these ist,dass ich das mit der universellen eigenschaft zeigen kann:
folgende abbildungen existieren wegen bilinearitaet:
[mm] \overline{K} \times [/mm] L [mm] \to \overline{K}^{n} [/mm]
[mm] \overline{K} \times [/mm] L [mm] \to \overline{K} \otimes [/mm] L
dann gibt es auch genau eine bilineare abbildung
[mm] \overline{K} \otimes L\to \overline{K}^{n} [/mm]
und damit haette ich die isomorphie gezeigt.
ist das richtig?(in der vorlesung haben wir gerade diese univ. eigenschaft nicht definiert,wir haben diese aufgabe damals auch mit ganz anderen mitteln geloest,deswegen frage ich).
ps:in der aufgabe war explizit gesagt,dass das ein isomorphismus von [mm] \overline{K} [/mm] -algebren sein soll .ich weiss jetzt nicht wie ich hantieren darf

        
Bezug
universelle eigenschaft: Antwort
Status: (Antwort) fertig Status 
Datum: 21:50 Di 02.02.2010
Autor: SEcki


> gibt es eine universelle eigenschaft fuer das tensorprodukt
> von koerpern?

Was meinst du damit? Das Tensorprodukt muss man fixieren - das Tensorprodukt ist abhängig, über welchen Ring der Modul, welchem Körper der Vektorraum, welchen Ring die Algebra definiiert sind. [m]\IC\otimes_\IQ \IC \neq \IC\otimes_\IC \IC = \IC[/m], hier mal Tensorprodukte über Körper.

>  ich weiss ,dass es eine fuer tensorprodukt von
> moduln,r-algebren und vektorrauemen gibt.ich wollte damit
> die isomorphie von zwei koerpern zeigen

Könntest du das etwas mehr ausführen? Du kannst ja zB K, L über einem Körper P haben, und das Tensorprodukt über diesem Körper P betrachten.

> [mm]\overline{K} \otimes[/mm] L [mm]\cong \overline{K}^{n}[/mm]
>  
> (meine these ist,dass ich das mit der universellen
> eigenschaft zeigen kann:
>  folgende abbildungen existieren wegen bilinearitaet:
>  [mm]\overline{K} \times[/mm] L [mm]\to \overline{K}^{n}[/mm]
>  [mm]\overline{K} \times[/mm]
> L [mm]\to \overline{K} \otimes[/mm] L
>  dann gibt es auch genau eine bilineare abbildung
>  [mm]\overline{K} \otimes L\to \overline{K}^{n}[/mm]

Kannst du das etwas weiter ausführen? Es könnte sein, dass das so geht; ich seh das nicht. Im allgemeinen hat der Körper ja noch die Multiplikation, dh wenn zwei Körper als Tensorprodkt über einem anderen gleich sind, überzeugt es mich noch nicht dass sie als Körper isomorph sind.

>  und damit
> haette ich die isomorphie gezeigt.
>  ist das richtig?(in der vorlesung haben wir gerade diese
> univ. eigenschaft nicht definiert,wir haben diese aufgabe
> damals auch mit ganz anderen mitteln geloest,deswegen frage
> ich).

Vielleicht gib mal die ganze Aufgabe und deine komplette Lösung an.

>  ps:in der aufgabe war explizit gesagt,dass das ein
> isomorphismus von [mm]\overline{K}[/mm] -algebren sein soll .ich
> weiss jetzt nicht wie ich hantieren darf

hm? Also, wenn K, L Körper über P sind und es einen P-Algebreniso gibt mit [m]K\cong L[/m] als P Algebren, dann sind die Körper isomorph.

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de