www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - urnenmodell
urnenmodell < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

urnenmodell: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:45 So 07.02.2010
Autor: elba

Aufgabe
In einer Urne liegen fünf schwarze und vier weiße Kugeln. Peter und Paul spielen folgendes Spiel:
Aus der Urne werden ohne Zurücklegen m [mm] (1\le [/mm] m [mm] \ge [/mm] 9) Kugeln gezogen. Peter gewinnt wenn unter den gezogenen Kugeln mindestens gleiche viele weiße wie schwarze sind. Andernfalls gewinnt Paul. Peter darf m im voraus festlegen. Welche Wahl von m ist für ihn am günstigsten?

Also "mindestens gleich viel" heißt doch, dass auch mehr weiße als schwarze oder umgekehrt gezogen werden können, oder?
Dann wäre m=7 doch am günstigsten, weil wenn theoretisch 5 mal hintereinander die gleiche Farbe gezogen wird, was bei schwarz möglich wäre, wären die letzten zwei auf jeden Fall rot, oder?
Wie kann man das denn irgendwie mathematischer aufschreiben??

        
Bezug
urnenmodell: Antwort
Status: (Antwort) fertig Status 
Datum: 12:56 So 07.02.2010
Autor: abakus


> In einer Urne liegen fünf schwarze und vier weiße Kugeln.
> Peter und Paul spielen folgendes Spiel:
>  Aus der Urne werden ohne Zurücklegen m [mm](1\le[/mm] m [mm]\ge[/mm] 9)
> Kugeln gezogen. Peter gewinnt wenn unter den gezogenen
> Kugeln mindestens gleiche viele weiße wie schwarze sind.
> Andernfalls gewinnt Paul. Peter darf m im voraus festlegen.
> Welche Wahl von m ist für ihn am günstigsten?
>  Also "mindestens gleich viel" heißt doch, dass auch mehr
> weiße als schwarze oder umgekehrt gezogen werden können,
> oder?
> Dann wäre m=7 doch am günstigsten, weil wenn theoretisch
> 5 mal hintereinander die gleiche Farbe gezogen wird, was
> bei schwarz möglich wäre, wären die letzten zwei auf
> jeden Fall rot, oder?

Dasa ausgerechnet diese Zugfolge eintritt, ist ja wohl sehr unwahrscheinlich.

>  Wie kann man das denn irgendwie mathematischer
> aufschreiben??

Du musst schon eine Fallunterscheidung aller 9 möglichen Fälle für m machen.
m=1: Siegchance für Peter 4/9
m=2: Peter verliert nur bei schwarz-schwarz. Seine Gewinnchance ist somit 1-((5/9)*(4/8))=....
m=3: Peter gewinnt bei www, sww,wsw, wws. Gewinnwahrscheinlichkeit:...
m=4:
...
...
m=9:
Ganz ohne Arbeit geht es hier nicht.
Gruß Abakus


Bezug
                
Bezug
urnenmodell: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:00 So 07.02.2010
Autor: elba

gut, das klingt ganz logisch.
aber warum ist denn bei m=1 die Siegchance für Peter [mm] \bruch{4}{9}?? [/mm]
Bei m=1 hat Peter doch gar keine Chance zu gewinnen, oder seh ich das falsch?? Es müssen doch von beiden Farben mind. gleich viele gezogen worden sein, was bei m=1 doch nicht möglich ist.

Bezug
                        
Bezug
urnenmodell: Antwort
Status: (Antwort) fertig Status 
Datum: 13:04 So 07.02.2010
Autor: abakus


> gut, das klingt ganz logisch.
>  aber warum ist denn bei m=1 die Siegchance für Peter
> [mm]\bruch{4}{9}??[/mm]
>  Bei m=1 hat Peter doch gar keine Chance zu gewinnen, oder
> seh ich das falsch?? Es müssen doch von beiden Farben
> mind. gleich viele gezogen worden sein, was bei m=1 doch
> nicht möglich ist.

Hallo,
"mindestes gleich viele weiße wie schwarze" heißt:
es werden genau gleich viele weiße und schwarze
ODER es werden sogar mehr weiße als schwarze gezogen.
Peter gewinnt also, wenn [mm] w\ge [/mm] s gilt.
Gruß Abakus


Bezug
                                
Bezug
urnenmodell: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:42 So 07.02.2010
Autor: elba

Danke, so hatte ich das gar nicht verstanden.
Ich hab das jetzt mal versucht zu rechnen.
Und bekomme jetzt als günstigste Wahl m=4 mit 64,29%.
Wäre nett, wenn du das für m=4 einmal nachrechnen könntest, damit ich weiß, ob das Ergebnis dafür überhaupt stimmt.

Bezug
                                        
Bezug
urnenmodell: Antwort
Status: (Antwort) fertig Status 
Datum: 14:56 So 07.02.2010
Autor: abakus


> Danke, so hatte ich das gar nicht verstanden.
>  Ich hab das jetzt mal versucht zu rechnen.
> Und bekomme jetzt als günstigste Wahl m=4 mit 64,29%.
> Wäre nett, wenn du das für m=4 einmal nachrechnen
> könntest, damit ich weiß, ob das Ergebnis dafür
> überhaupt stimmt.

Schnellere Hilfe bekommst du im Forum, wenn du vorrechnest.
Mein Tipp: am schnellsten ist das Gegenereignis berechnet. es besteht aus
- 4 mal schwarz, Wahrsch. (5*4*3*2)/(9*8*7*6)
- 3 mal schwarz, einmal weiß (dafür 4 verschiedene Reihenfolgen mit jeweils (5*4*3*4)/(9*8*7*6)
Gruß Abakus

Bezug
                                                
Bezug
urnenmodell: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:11 So 07.02.2010
Autor: elba

Ja, ich hab das auch mit dem Gegenereignis berechnet:
1-( [mm] \bruch{5}{9}*\bruch{4}{8}*\bruch{3}{7}*\bruch{2}{6}+4*(\bruch{5}{9}*\bruch{4}{8}*\bruch{3}{7}*\bruch{4}{6})=0,6429 [/mm]

Danke schön!!



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de