www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - vektorräume
vektorräume < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vektorräume: übung, hilfeee, muss morgen ab
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:49 Mi 16.11.2005
Autor: katharina1

Es sei V ein k-vektorraum.

a)Sei W c V eine teilmenge.Man zeige,daß die folgenden drei aussagen äquivalent sind:


i)W ist ein untervektorraum von V.

j)Es gilt W#{} und ߀K, u,w€W:u+ß.w€W .

k)es gilt W#{} und ߀K, u,w€W:ß(u+w)€W.

b)Es seien W1 und W2 untervektorräume von V.man zeige,daß dann W1UW2 genau dann ein untervektorraum von V ist,wenn:
W1cW2 oder W2cW1 gilt.

ich brauche hilfe


    ich habe die frage in www.onlinemathe.de gestellt.

        
Bezug
vektorräume: Antwort (nicht fertig)
Status: (Antwort) noch nicht fertig Status 
Datum: 02:00 Do 17.11.2005
Autor: Tobi0909

Die b) kann ich dir machen, für die erste hab ich leider keine Zeit mehr. (muss selber auch noch HA abgeben morgen)

b)Es seien [mm] $W_{1}$ [/mm]  und [mm] $W_{2}$ [/mm] Untervektorräume von $V$. Man zeige,daß dann [mm] $W_{1} \cup W_{2}$ [/mm] genau dann ein Untervektorraum von $V$ ist,wenn:
[mm] $W_{1} \subseteq W_{2}$ [/mm] oder [mm] $W_{2} \subseteq W_{1}$ [/mm] gilt.

z.z. [mm] $W_{1},W_{2} \in [/mm] V  [mm] \Rightarrow [/mm] U [mm] \subseteq W_{1}$ [/mm] oder [mm] $W_{2} \subseteq W_{1}$ [/mm]

Annahme: [mm] $W_{1}$ [/mm] ist keine Teilmenge von [mm] $W_{2}$ [/mm] oder [mm] $W_{2}$ [/mm] ist keine Teilmenge von [mm] $W_{1}$ [/mm]

Es gibt ein $x [mm] \in W_{1} \setminus W_{2}$ [/mm] und außerdem gibt es ein $y [mm] \in W_{2} \setminus W_{1}$. [/mm]

$x+y=w [mm] \in W_{1} \cup W_{2} \Rightarrow [/mm] w [mm] \in W_{1}$ [/mm] oder $w [mm] \in W_{2}$ [/mm]

1. Fall:

$w [mm] \in W_{1}$: [/mm] $ [mm] \Rightarrow [/mm] w=x+y+(-x) [mm] \in [/mm] W{1}  [mm] \Rightarrow y\in W_{1}$ [/mm]
Das ist ein Widerspruch zur Annahme $y [mm] \not\in W_{1}$ [/mm]

2. Fall:

$w [mm] \in W_{2}$: [/mm] $ [mm] \Rightarrow [/mm] w=x+y+(-y) [mm] \in W_{2} \Rightarrow x\in W_{2}$ [/mm]
Das ist ein Widerspruch zur Annahme $x [mm] \not\in W_{2}$ [/mm]


Bezug
        
Bezug
vektorräume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:15 Do 17.11.2005
Autor: angela.h.b.


> Es sei V ein k-vektorraum.
>  
> a)Sei W c V eine teilmenge.Man zeige,daß die folgenden drei
> aussagen äquivalent sind:
>  
>
> i)W ist ein untervektorraum von V.
>  
> j)Es gilt W#{} und ߀K, u,w€W:u+ß.w€W .
>  
> k)es gilt W#{} und ߀K, u,w€W:ß(u+w)€W.
>  
> b)Es seien W1 und W2 untervektorräume von V.man zeige,daß
> dann W1UW2 genau dann ein untervektorraum von V ist,wenn:
>  W1cW2 oder W2cW1 gilt.
>  
> ich brauche hilfe

Hallo,

ich hatte es Dir schonmal angedeutet, jetzt sage ich es ganz deutlich:
Dieses Forum ist nicht als "Lösungsmaschine" gedacht. Abschreiben kannst Du auch in der Stunde vor der Abgabe bei Deinen Kommilitonen.

Du solltest hier schon eigene Lösungsansätze, Ideen, oder - wenn Du etwas nicht verstanden hast oder nicht weiterkommst - konkrete Fragen stellen. Lies Dir mal die Regeln für diese Forum durch.

Schau Dich im Forum um, Du wirst sehen, daß gerne, oft und auch recht ausführlich geholfen wird, bei Leuten, die den Willen haben, etwas zu lernen.

Gruß v. Angela

>
>
> ich habe die frage in www.onlinemathe.de gestellt.  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de