www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - vektorraum der folgen
vektorraum der folgen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vektorraum der folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:54 Sa 27.03.2010
Autor: s-jojo

Aufgabe
Def.: Menge [mm] K^M:=Abb(M,K) [/mm] aller Abb. g: [mm] M\to [/mm] K von M in einem Körper K ist Vektorraum mit + und *

[mm] M=\IN=K^{\IN} [/mm] ist Vektorraum d. Folgen über K
[mm] a\in K^{\IN},also (a1,a2,a3,...):(a_{n})_{n\in\IN} [/mm] mit [mm] a_{n}\in [/mm] K

Hi :)

Könntet ihr mir vielleicht ein Beispiel für so einen Vektorraum geben? Ich kann mir darunter gar nichts vorstellen.

Das mit dem Standardvektorraum versteh ich z.B., weil ich weiß, dass da nur die Standardvektoren wie [mm] \vektor{1 \\ 0\\0},\vektor{0 \\ 1\\0} [/mm] drin sind, aber was ist der Vektorraum der Folgen ?

Gruß,
s-jojo

        
Bezug
vektorraum der folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:14 Sa 27.03.2010
Autor: angela.h.b.


> Def.: Menge [mm]K^M:=Abb(M,K)[/mm] aller Abb. g: [mm]M\to[/mm] K von M in
> einem Körper K ist Vektorraum mit + und *

Hallo,

es sehr wichtig, daß Dir die beiden Vernüpfungen + und [mm] \* [/mm] klar sind.
Definitionen angucken und nicht vergessen, Du wirst sie ständig brauchen.

>  
> [mm]M=\IN=K^{\IN}[/mm] ist Vektorraum d. Folgen über K
>  [mm]a\in K^{\IN},also (a1,a2,a3,...):(a_{n})_{n\in\IN}[/mm] mit
> [mm]a_{n}\in[/mm] K

Nehmen wir [mm] K:=\IR. [/mm]

Dann ist [mm] \IR^{\IN} [/mm] der Vektorraum der reellen Folgen, denn reelle Folgen sind ja Abbildungen aus den natürlichen Zahlen in die reellen Zahlen.
Damit hast Du ein Beispiel.

Die Verwandschaft zu den wohlbekannten Vektorräumen [mm] \IR^n [/mm] wird Dir klar,
wenn Du die Folgen als  unendliche Tupel schreibst, z.B.  [mm] c:=(c_n):=( [/mm] 3,5,1,6,0,0,7,4711, 14,2,5,7,...).
(Dies ist ein völlig willkürliches Beispiel für irgendeine Folge. Du mußt nicht drüber grübeln, wie sie weitergeht.)

Über die Addition von Folgen und die Multiplikation mit reellen Zahlen hast Du in der Analysis was gelernt:

[mm] (a_n)+(b_n)=(a_n+b_n) [/mm]  , in Worten: zwei Folgen werden elementweise addiert,

[mm] r*(a_n):=(ra_n), [/mm] Folgen werden elementweise mit reellen zahlen multipliziert,

und Du könntest nun überprüfen, ob dies zu den (oben nicht angegebenen) Definitionen von + und * im Vektorraum der Abbildungen von [mm] \IN [/mm] nach [mm] \IR [/mm] paßt.

Bedenke, daß [mm] a:=(a_1, a_2, a_3, [/mm] ...) steht für a:=(a(1), a(2), a(3),...).

Es ist dies eine spezielle Art, die Abbildung a anzugeben, welche so aufzählend natürlich bei Funktionen, deren Definitionsbereich [mm] \IR [/mm] ist, nicht klappen kann.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de