www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - verändertes Grundintegral
verändertes Grundintegral < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

verändertes Grundintegral: Tipp + Lösungsweg?
Status: (Frage) beantwortet Status 
Datum: 09:43 Do 27.05.2010
Autor: Rudy

Hallo!

Ich muss folgendes Integral "händisch" lösen:
[mm] \integral_{}^{}{\bruch{1}{\wurzel{3-8*x^2}} dx} [/mm]

Könnte mir jemand helfen????


        
Bezug
verändertes Grundintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 10:03 Do 27.05.2010
Autor: angela.h.b.

Hallo,

>  [mm]\integral_{}^{}{\bruch{1}{\wurzel{3-8*x^2}} dx}[/mm]

[mm] =\bruch{1}{\wurzel{3}}\integral_{}^{}{\bruch{1}{\wurzel{1-\bruch{8}{3}*x^2}} dx}. [/mm]

Wenn Du nun substituierst mit [mm] t=\wurzel{\bruch{8}{3}}x [/mm] kommst Du auf ein Integral, welches Du wahrscheinlich bereits im Repertoire hast.

Gruß v. Angela


Bezug
                
Bezug
verändertes Grundintegral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:15 Do 27.05.2010
Autor: Florian_know

Das Repertoire bekommst du beim Billa in der Gemüseabteilung :D.

Bezug
                        
Bezug
verändertes Grundintegral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:21 Do 27.05.2010
Autor: fred97


> Das Repertoire bekommst du beim Billa in der
> Gemüseabteilung :D.

Toll , heute erst Mitglied geworden, und schon einen überaus konstruktiven Beitrag geleistet !

Glüchwunsch für diese geistige Meisterleistung.

FRED

Bezug
                
Bezug
verändertes Grundintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:17 Do 27.05.2010
Autor: Rudy

Leider ist mein Repertoire bei der Integralrechnung recht begrenz :-(

Ich weiß zwar, dass du nun auf arc sin hinaus willst, aber was soll ich mit der Substitution anfangen? Hat das noch eine innere Ableitung?
Könntest Du mir vielleicht ein paar Zwischenschritte aufschreiben?

DANKE


Bezug
                        
Bezug
verändertes Grundintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 10:25 Do 27.05.2010
Autor: angela.h.b.


> Ich weiß zwar, dass du nun auf arc sin hinaus willst,

Hallo,

ja. Dein Repertoire ist also offensichtlich begrenzt, aber nicht zu begrenzt für diese Aufgabe.

> aber
> was soll ich mit der Substitution anfangen?

Sie einfach mal durchführen...

> Hat das noch
> eine innere Ableitung?

Was jetzt genau?

>  Könntest Du mir vielleicht ein paar Zwischenschritte
> aufschreiben?

Eigentlich bist Du derjenige, der hier rechnen soll...

Vielleicht sagst Du mal genauer, wo es hängt.
Substitution kannst Du?
Wie weit kommst Du?

Gruß v. Angela



Bezug
                                
Bezug
verändertes Grundintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:41 Do 27.05.2010
Autor: Rudy

Ich hab beim Substituieren [mm] u=(\bruch{8}{3}*x^{2}) [/mm] gesetzt.

Dann bin ich auf folgendes gekommen:
[mm] \bruch{1}{\wurzel{3}} [/mm] * arcsin [mm] (\bruch{8}{3}*x^2) [/mm]

Wie muss ich aber die innere Ableitung berücksichtigen?
Wenn ich u noch mal ableite komme ich auf folgendes:
dx = [mm] \bruch{3}{16*x} [/mm] du

Was mache ich nun mit dieser Lösung?

Bezug
                                        
Bezug
verändertes Grundintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 11:09 Do 27.05.2010
Autor: angela.h.b.


> Ich hab beim Substituieren [mm]u=(\bruch{8}{3}*x^{2})[/mm] gesetzt.

Hallo,

dann substituierst Du aber ganz anders als ich es gesagt hatte!

>  
> Dann bin ich auf folgendes gekommen:

Wie denn?
Gib alle Zwischenschritte mit an.

>  [mm]\bruch{1}{\wurzel{3}}[/mm] * arcsin [mm](\bruch{8}{3}*x^2)[/mm]

= was? Die gesuchte Stammfunktion?

>  
> Wie muss ich aber die innere Ableitung berücksichtigen?
>  Wenn ich u noch mal ableite komme ich auf folgendes:
>  dx = [mm]\bruch{3}{16*x}[/mm] du

Ja. Und [mm] x=\wurzel{\bruch{3}{8}}*\wurzel{u}. [/mm]

Ich mache das so:
mit
[mm] u=(\bruch{8}{3}*x^{2}) [/mm]
hat man
[mm] x=\wurzel{\bruch{3}{8}}*\wurzel{u}, [/mm]

und dx= [mm] \wurzel{\bruch{3}{8}}*\bruch{1}{2\wurzel{u}}du. [/mm]

Hierdurch wäre das dx im Integral zu ersetzen - es ist dasselbe, was Du oben auch bekommst.


> Was mache ich nun mit dieser Lösung?

Das nun entstandene Integral wäre nun zu lösen.
Dazu müßten wir wissen, wie es lautet...

Aber wie gesagt: ich hatte ja eine andere Substitution vorgeschlagen, mit welcher man (jedenfalls ich) schneller zum Ziel kommt.

Gruß v. Angela


Bezug
                                                
Bezug
verändertes Grundintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:40 Do 27.05.2010
Autor: Rudy

Ich komme dann auf folgendes:
[mm] \bruch{3}{\wurzel{8}}*\bruch{1}{2}*\integral_{}^{}{ \bruch{1}{\wurzel{1-u}}*\bruch{1}{\wurzel{u}}du} [/mm]

Das hilft mir auch nicht weiter.

Können wir daher noch mal auf deinen ersten Vorschlag zurückkehren.
Also mit [mm] t=\wurzel{\bruch{8}{3}}*x [/mm] substituieren.
Bitte hilf mir aber dann mit den weiteren Schritten. Ich hab nämlich nicht mehr weiter gewusst, und daher anders substituiert.

DANKE für Deine Bemühungen!!!

Bezug
                                                        
Bezug
verändertes Grundintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 12:01 Do 27.05.2010
Autor: schachuzipus

Hallo Rudy,

> Ich komme dann auf folgendes:
>  [mm]\bruch{3}{\wurzel{8}}*\bruch{1}{2}*\integral_{}^{}{ \bruch{1}{\wurzel{1-u}}*\bruch{1}{\wurzel{u}}du}[/mm]

Ich komme da auf [mm] $\frac{1}{2\sqrt{8}}\int{\frac{1}{\sqrt{1-u}\cdot{}\sqrt{u}} \ du}$ [/mm]

>  
> Das hilft mir auch nicht weiter.
>  
> Können wir daher noch mal auf deinen ersten Vorschlag
> zurückkehren.
>  Also mit [mm]t=\wurzel{\bruch{8}{3}}*x[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

substituieren.

>  Bitte hilf mir aber dann mit den weiteren Schritten.

Das geht doch genauso:

Mit $t=t(x):=\sqrt{\frac{8}{3}}x$ ist $\red{t^2=\frac{8}{3}x^2} und $t'(x)=\frac{dt}{dx}=\sqrt{\frac{8}{3}}$ und damit $\blue{dx=\sqrt{\frac{3}{8}} \ dt}$

Das eingesetz ergibt:

$\int{\frac{1}{\sqrt{3-8x^2}} \ dx}=\frac{1}{\sqrt{3}}\cdot{}\int{\frac{1}{\sqrt{1-\red{\frac{8}{3}x^2}}} \ \blue{dx}}=\frac{1}{\sqrt{3}}\cdot{}\int{\frac{1}{\sqrt{1-\red{t^2}}} \ \blue{\sqrt{\frac{3}{8}} \ dt}}$

$=\frac{1}{\sqrt{8}}\int{\frac{1}{\sqrt{1-t^2}} \ dt=\ldots$

> Ich hab nämlich nicht mehr weiter gewusst, und daher anders
> substituiert.
>  
> DANKE für Deine Bemühungen!!!


Gruß

schachuzipus

Bezug
                                                                
Bezug
verändertes Grundintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:10 Do 27.05.2010
Autor: Rudy

OK, also sollte folgendes rauskommen:

[mm] \bruch{1}{\wurzel{8}}*arc [/mm] sin (t) + C

Und das is wiederum...

[mm] \bruch{1}{\wurzel{8}}*arc [/mm] sin [mm] (\wurzel{\bruch{8}{3}}*x) [/mm] + C

Stimmt das so????

DANKE noch mal an schachuzipus!!!

Bezug
                                                                        
Bezug
verändertes Grundintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 13:16 Do 27.05.2010
Autor: angela.h.b.


> OK, also sollte folgendes rauskommen:
>  
> [mm]\bruch{1}{\wurzel{8}}*arc[/mm] sin (t) + C
>  
> Und das is wiederum...

Rücksubstitution:

>  
> [mm]\bruch{1}{\wurzel{8}}*arcsin(\wurzel{\bruch{8}{3}}*x)[/mm] + C
>  
> Stimmt das so????

Hallo,

ja, so ist es richtig - durch Ableiten könntest Du Dich davon überzeugen.

Gruß v. Angela




Bezug
                                                                                
Bezug
verändertes Grundintegral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:35 Do 27.05.2010
Autor: Rudy

DANKE Euch vielmals!!!!!!



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de