www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - vereinigung/schnitt
vereinigung/schnitt < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vereinigung/schnitt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:52 Sa 22.10.2005
Autor: bobby

Hallo!
Ich habe gerade mit Stochastik angefangen...
Bei folgender Frage meine ich zwar die Antwort zu wissen, aber mir fehlt noch der Beweis dazu, wo ich aber einfach nicht weiterkomme...

Bezeichne mit R die Menge aller achsenparallelen Rechtecke im [mm] \IR^{2}, [/mm] die zwei fest vorgegebene Punkte [mm] a,b\in\IR^{2} [/mm] enthalten. Bestimme mit Beweis [mm] \capR [/mm] und [mm] \cupR. [/mm]

Meiner Meinung nach ist [mm] \capR= [/mm] die Strecke zwischen a und b.
Und [mm] \cupR=\IR^{2}, [/mm] aber wenn das so wäre mit der Vereinigung, dann würden doch auch alle Rechtecke, die nicht achsenparallel sind mit eingeschlossen, oder? Beim Schnitt bin ich mir ziemlich sicher, allerdings fehlt mir noch zu beidem der Beweis... Ich abe mir das ganze einfach bildlich vorgestellt um das Ergebnis zu erhalten, aber ein Bild reicht ja auch nicht aus...HILFE

        
Bezug
vereinigung/schnitt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:10 Sa 22.10.2005
Autor: danielinteractive

Soll wahrsch. so aussehen:

> Bezeichne mit R die Menge aller achsenparallelen Rechtecke
> im [mm]\IR^{2},[/mm] die zwei fest vorgegebene Punkte [mm]a,b\in\IR^{2}[/mm]
> enthalten. Bestimme mit Beweis [mm]\cap R[/mm] und [mm]\cup R.[/mm]
>  
> Meiner Meinung nach ist [mm]\cap R=[/mm] die Strecke zwischen a und
> b.
>  Und [mm]\cup R=\IR^{2},[/mm] aber wenn das so wäre mit der
> Vereinigung, dann würden doch auch alle Rechtecke, die
> nicht achsenparallel sind mit eingeschlossen, oder? Beim
> Schnitt bin ich mir ziemlich sicher, allerdings fehlt mir
> noch zu beidem der Beweis... Ich abe mir das ganze einfach
> bildlich vorgestellt um das Ergebnis zu erhalten, aber ein
> Bild reicht ja auch nicht aus...HILFE


Bezug
        
Bezug
vereinigung/schnitt: Rechtecke
Status: (Antwort) fertig Status 
Datum: 15:30 Sa 22.10.2005
Autor: danielinteractive

Hallo Bobby!

a) [mm] \cap R [/mm] müsste meiner Meinung nach das Rechteck mit den Punkten a,b als Eckpunkten sein (R(a,b)). Das ist aber nur dann eine Gerade, wenn a,b die gleichen x- oder y-Koordinaten haben! (nochmal aufzeichnen, die Rechtecke dürfen ja nur achsenparallel sein.)
Beweisskizze: - nimm ein [mm]\in R(a,b)[/mm] und zeige, dass es dann im Schnitt liegen muss. - anschließend ein [mm]x \in \IR^2 \setminus R(a,b)[/mm] und zeige, dass es ein Rechteck mit a,b gibt, dass nicht x enthält.
(Hier hilft sicher wieder eine Skizze!)

b) Bin ebenfalls für [mm]\cup R = \IR^2[/mm]. Beweis: Die Richtung [mm] \subset [/mm] ist klar. Für [mm]\supset [/mm] : Sei [mm]x=(x_1,x_2) \in \IR^2[/mm]. Wähle nun das achsenparallele Rechteck [mm]R_x:= \{ (x,y) \in \IR^2 \mid |x| \leq \max\{x_1,a_1,b_1\} \wedge |y| \leq \max\{x_2,a_2,b_2\} \}[/mm] Dann sind [mm]a,b,x \in R_x[/mm].

mfg
Daniel



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de