www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentialgleichungen" - verständnis problem Prüfungsau
verständnis problem Prüfungsau < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

verständnis problem Prüfungsau: ideen zum verständnis
Status: (Frage) beantwortet Status 
Datum: 17:21 Do 24.09.2009
Autor: michime

Aufgabe
Aufgabe 2 10 Punkte.
Man begründe für die folgenden Anfangswertaufgaben ob lokale
Existenz und Eindeutigkeit vorliegt. Falls ja, dann bestimme man die Lösung und gebe das maximale Existenzintervall an.
2.a)
[mm] y_{(t)}'=e^{y_{(t)}} [/mm] ; [mm] y_{(0)} [/mm] = 1

2.b)
[mm] y_{(t)}' [/mm] = [mm] y_{(t)}^{\bruch{-1}{2}}(e^{y_{(t)}}-1), y_{(0)}=0 [/mm]

So ich bin mal wieder hier und wie man am Datum sehen kann geht es da wohl auf eine nachklausur zu wo ich, vom anderen Ufer leider durch muss. Also daher hier nun meine Fragen:
1.
Man sollte hie in der Aufgabe auf ein paar begriffe hin begründen die ich auch zuvor noch nicht gesehen hatte.
Nun musste ich aber festellen das mir die Wikipedia nicht weiter helfen kann, bin wohl nicht weit genug.
Daher ist mir zumindest Existenz und Eindeutigkeit nicht ganz klar. Bis zur maximalen Existenzintervall kamm ich schon garnicht.

Wenn ich TDV (Trennung der Variablen) kamm ich auch nicht so wirklich weiter bei der 2.a) irgend wie kommen wir da durch einander mit dem Log...

Wir haben versucht:

[mm] \bruch{dy}{dt} [/mm] = [mm] e^{y} [/mm]
dt = [mm] \bruch{e^y}{dy} [/mm]
[mm] dt=\bruch{1}{dy}e^{y} |\int [/mm]  angewendet
x+c = [mm] e^y+c [/mm]
[mm] \log((x+c) [/mm] = [mm] y+\log(c)-log(c) [/mm]
[mm] \log(x+c)-log(c)=y [/mm]

scheint aber so nicht ganz richtig zu sein....
Hilfe...danke!

michime

        
Bezug
verständnis problem Prüfungsau: Antwort
Status: (Antwort) fertig Status 
Datum: 18:36 Do 24.09.2009
Autor: Teufel

Hi!

Ich kann dir leider nur den Lösungsweg sagen, da ich vom Rest keine Ahnung habe.
Dividiere die Gleichung durch [mm] e^y [/mm] (problemlos möglich, da [mm] e^x>0 [/mm] für alle x [mm] \in \IR). [/mm]
Dann integrierst du beide Seiten (z=y(t) setzen)).
Allerdings solltest du nicht 2 mal c als additive Konstante verwenden, sondern eher z.B. a oder b. Oder du schreibst direkt nur auf einer Seite +c hin.

Wie auch immer, den Rest schaffst du dann sicher, zumindest von der Berechnung her.

[anon] Teufel

Bezug
        
Bezug
verständnis problem Prüfungsau: Antwort
Status: (Antwort) fertig Status 
Datum: 02:59 Fr 25.09.2009
Autor: leduart

Hallo
wie integrierst du mit dy im Nenner?
richtig ist [mm] e^{-y}=dt [/mm]
jetzt integrieren und das eine c bestimmen.
Du solltest eigentlich den Satz von Picard-Lindelöf kennen sonst sieh ihn nach, dann findest du was du suchst.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de