www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - voll. Induktion
voll. Induktion < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

voll. Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:25 So 25.05.2008
Autor: masio

Hallo ihr Lieben,

ich weiß nciht, ob ich im richtigen Thementhreat bin, denn ich habe vor mir eine Rekursionsformel der Stochastik, die ich anhand der vollständigen Induktion beweisen muss, könntet ihr mir bitte behilflich sein?


Hier ist die Formel_ Seid mir bitte bitte nicht böse, wenn ich nicht viel habe, denn ich komme mit der Formel gar nicht klar.


B(n;p;k+1) [mm] =\vektor{n \\ k+1} [/mm] p^(k+1) * q^(n-k-1)
  
                   = [mm] \bruch{(n-k)p}{k+1)q} [/mm] * [mm] \vektor{n \\ k} [/mm] p^(k) * q^(n-k)

                    [mm] =\bruch{(n-k)p}{k+1)q} [/mm] * B(n;p;k)

Nun steht hier, dass man durch vollständige Induktion leicht zeigen könne, dass folgendes gilt:

B(1500;0,001;k)  [mm] \approx \bruch{1,5^k}{k!} [/mm] * e^(-1,5)


Nun fange ich mal wie "üblich" es auch bei einer vollständigen Induktion ist an:



Induktionsanfang: n=1

Wie gehe ich hier nur ran, weil mich irritiert das k sehr, weil es sich da dabei um eine Variable handelt

Könntet ihr mir bitte weiterhelfen, sitze seit gestern nicht an genau dieser Aufgabe, aber an diesem Stochastik Thema und bin deswegen sehr fertig. Ich danke euch sehr, für alle Kommentare.


Liebe Grüße
masio

P.S. Es geht hier um die Poissoin Verteilung in der Stochastik..., doch dachte ich, dass die vollständige Induktion auch in das Thema Analysis reinpasst.


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
voll. Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:11 So 25.05.2008
Autor: Al-Chwarizmi


> Hallo ihr Lieben,
>  
> ich weiß nciht, ob ich im richtigen Thementhread bin, denn
> ich habe vor mir eine Rekursionsformel der Stochastik, die
> ich anhand der vollständigen Induktion beweisen muss,
> könntet ihr mir bitte behilflich sein?
>  
>
> Hier ist die Formel_ Seid mir bitte bitte nicht böse, wenn
> ich nicht viel habe, denn ich komme mit der Formel gar
> nicht klar.
>  
>
> B(n;p;k+1) [mm]=\vektor{n \\ k+1}[/mm] p^(k+1) * q^(n-k-1)
>
> = [mm]\bruch{(n-k)p}{(k+1)q}[/mm] * [mm]\vektor{n \\ k}[/mm] p^(k) * q^(n-k)
>
> [mm]=\bruch{(n-k)p}{(k+1)q}[/mm] * B(n;p;k)

Ich nehme einmal an, dass diese Gleichung, welche es erlaubt,
B(n;p;k+1) mittels B(n;p;k) auszudrücken, eine Hilfestellung
zum Induktionsbeweis sein soll. Deshalb scheint es mir, dass
eine Induktion nach  k  (und nicht nach n) gemeint ist.

> Nun steht hier, dass man durch vollständige Induktion
> leicht

(wie leicht oder auch nicht, wird sich ja noch ZEIGEN...)

> zeigen könne, dass folgendes gilt:
>  
> B(1500;0,001;k)  [mm]\approx \bruch{1,5^k}{k!}[/mm] * e^(-1,5)
>  
>
> Nun fange ich mal wie "üblich" es auch bei einer
> vollständigen Induktion ist an:
>  
> Induktionsanfang: n=1

Ich würde nun vorschlagen: Start mit n=1500 und k=0 !
(das n bleibt im Folgenden konstant, k soll schrittweise
vergrössert werden bis zu einem Endwert, den wir vielleicht
besser mit  K  (anstatt wieder k) bezeichnen.

Als Anfangsgleichung hätten wir also:

B(1500;0.001;0) = [mm] \vektor{1500\\0}* 0.001^0*0.999^{1500} [/mm]
  
Und nun müsste der Induktionsbeweis nach k kommen, mit dem
Ziel, zur approximativen Aussage:

B(1500;0,001;K)  [mm]\approx \bruch{1,5^K}{K!}[/mm] * e^(-1,5)

zu kommen.

Al-Chwarizmi


P.S. :

Der Induktionsbeweis ist mir bisher nicht (bzw. nicht ganz) gelungen
(Man kann natürlich nicht die approximative Gleichung durch
vollständige Induktion exakt beweisen !)

Ich vermute aber, dass die Approximation nur für kleine  K  brauch-
bar ist. Numerisch habe ich gefunden, dass sie für K=10 recht gut
ist (rel. Fehler etwa 2%) aber für  K=1500  komplett versagt.




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de