www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - vollständige Induktion
vollständige Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:59 Fr 26.10.2007
Autor: Mijoko

Aufgabe
Für [mm] n\in\IN_0 [/mm] sei [mm] F_:=2^{2^n}+1 [/mm] . (fermat-Zahl)
a) Beweisen sie duch vollständige Induktion, dass für [mm] n\in\IN_0 [/mm] gilt: [mm] F_0*F_1*F_2...=F_{n+1}-2 [/mm] .
b) folgern sie, dass je zwei verschiedene Fermat-Zahlen teilerfremd sind.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
und ich hab nun ein Problem damit, dass [mm] F_0*F_1*F_2 [/mm] ... da steht. Bei Summen nimmt man ja das Summenzeichen, aber bei Produkten? Ich habe auch erst in der letzten Vorlesung die vollständige Induktion gehabt und es leider noch nicht ganz verstanden, wie die funktioniert. Bitte helft mir!

        
Bezug
vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:58 Fr 26.10.2007
Autor: rainerS

Hallo Mijoko!

> Für n€ [mm]\IN0[/mm] sei Fn:=2²^n+1. (fermat-Zahl)
>  a) Beweisen sie duch vollständige Induktion, dass für
> [mm]n€\IN0[/mm] gilt: F0F1F2...=F(n+1)-2.
>  b) folgern sie, dass je zwei verschiedene Fermat-Zahlen
> teilerfremd sind.

>  und ich hab nun ein Problem damit, dass F0F1F2.. da steht.
> Bei Summen nimmt man ja das Summenzeichen, aber bei
> Produkten?

Bei Produkten nimmt man als Produktzeichen das große [mm]\Pi[/mm]:

[mm]\prod_{i=0}^n F_i = F_{n+1} - 2[/mm].

> Ich habe auch erst in der letzten Vorlesung die
> vollständige Induktion gehabt und es leider noch nicht ganz
> verstanden, wie die funktioniert. Bitte helft mir!

Die vollständige Induktion funktioniert immer in drei Schritten:

1. Induktionsanfang: man zeigt, dass die Aussage für das erste Glied gilt.
In deinem Fall ist das n=0, du musst also nachweisen, dass [mm]F_0 = F_1 - 2[/mm].

2. Induktionsannahme: man nimmt an, dass die Aussage für ein Glied gilt.
Hier würde das für n annehmen, also sagen: Angenommen, es wäre

[mm]\prod_{i=0}^n F_i = F_{n+1} - 2[/mm].


3. Induktionsschluss: man zeigt, dass die Aussage für das nächste Glied (hier: n+1) gilt.
Du musst also zeigen, dass

[mm]\prod_{i=0 }^{\red{n+1}} F_i = F_{\red{n+2}} - 2[/mm].

Dabei darfst du die Annahme aus dem 2. Schritt verwenden.

Du darfst also verwenden, dass

[mm]\prod_{i=0}^{n+1} F_i = \left(\prod_{i=0}^{n}F_i\right) \cdot F_{n+1} \mathop{=}\limits_{\overbrace{\text{Annahme aus 2.}} }(F_{n+1} -2 ) \cdot F_{n+1} \stackrel{!}{=} F_{n+2} - 2[/mm]

  Viele Grüße
   Rainer

Bezug
                
Bezug
vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:36 Sa 27.10.2007
Autor: Vaebn_chi-Nei.rrh_tr.R.Mal

Erstmal danke, dein Antwort hat mir auch weitergeholfen. Allerdings nur insofern, dass ich meinen Lösungsansatz bestätigt sehe.

Wenn ich allerdings die o.g. Induktionsbehauptung die Formel [mm] Fn:=(2^2^n)+1 [/mm] einsetze, komm ich am Ende auf kein schlüssiges Ergebnis.

Theoretisch wäre dann ja Folgendes zu zeigen:

[mm] (2^2 [/mm] ^ (n+1) + 1 - [mm] 2)(2^2 [/mm] ^ (n+1) + 1) = [mm] 2^2 [/mm] ^ (n+2) + 1 - 2

Und wenn ich das ausrechne, steht bei mir am Ende 2n=n, was ja wohl kaum ein schlüssiges Ergebnis is.

Wo liegt mein Denkfehler?
Wäre dankbar für Hilfe.

Grüße, Vaebn

Bezug
                        
Bezug
vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:58 Sa 27.10.2007
Autor: Gonozal_IX

[mm](F_{n+1} - 2) * F_{n+1} = (2^{2^{n+1}} + 1 - 2)*(2^{2^{n+1}} + 1) = (2^{2^{n+1}} - 1)(2^{2^{n+1}} + 1) = 2^{2^{n+1}}*2^{2^{n+1}} - 1 = 2^{(2^{n+1} + 2^{n+1})} - 1 = 2^{(2*2^{n+1})} - 1 = 2^{2^{n+2}} - 1 = 2^{2^{n+2}} + 1 - 2 = F_{n+2} - 2[/mm]

MfG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de