www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - vollständige Induktion
vollständige Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:58 So 18.05.2008
Autor: Aldiimwald

Aufgabe
eigentlich ja klar.....aber:

Beweisen Si mit hilfe der vollst. ind.

[mm] \summe_{k=1}^{n}\bruch{1}{(6+k)(7+k)} [/mm] = [mm] \bruch{n}{7(7+n)} [/mm]

n [mm] \in [/mm] N

Also ich hänge...glaube es ist nur noch ne kleinigkeit aber ich habe grade ein brett vor dem kopf hoffe jemand von euch kann mir helfen.

I.A.:

A(1):
[mm] \summe_{k=1}^{1}\bruch{1}{(6+1)(7+1)} [/mm] = [mm] \bruch{1}{7(7+1)} [/mm] (wahr)

I.S:n--> n+1

[mm] \summe_{k=1}^{n+1}\bruch{1}{(6+k)(7+k)} [/mm] = ( [mm] \bruch{n+1}{7(8+n)}) [/mm] =

[mm] \summe_{k=1}^{n}\bruch{1}{(6+k)(7+k)} [/mm] +  [mm] \bruch{1}{(7+n)(8+n)} [/mm] =

[mm] \bruch{n}{7(7+n)} [/mm] + [mm] \bruch{1}{(7+n)(8+n)} [/mm]
und jetzt bekomme ich das irgendwie nicht weiter umgeformt so, dass ich auf [mm] \bruch{n+1}{7(8+n)} [/mm] komme.

Danke schonmal für die Hilfe

Gruß

        
Bezug
vollständige Induktion: Hauptnenner
Status: (Antwort) fertig Status 
Datum: 22:01 So 18.05.2008
Autor: Loddar

Hallo Aldiimwald!


Bringe beide Brüche auf den Hautptnenner $7*(7+n)*(8+n)_$ und fasse zusammen.


Gruß
Loddar


Bezug
                
Bezug
vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:11 So 18.05.2008
Autor: Aldiimwald

dann bekomme ich ja

[mm] \bruch{n (8+n)}{7(7+n) (8+n)} [/mm]  +  [mm] \bruch{1*7(7+n)}{(7+n)(8+n)7(7+n)} [/mm] = [mm] \bruch{n (8+n)+7}{7(7+n) (8+n)} [/mm]

und da hänge ich ich glaube ich hab huete schon zu viele zahlen gesehen und es is spät^^

Bezug
                        
Bezug
vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:20 So 18.05.2008
Autor: abakus


>  dann bekomme ich ja
>  
> [mm]\bruch{n (8+n)}{7(7+n) (8+n)}[/mm]  +  
> [mm]\bruch{1*7(7+n)}{(7+n)(8+n)7(7+n)}[/mm] =
>  
> [mm]\bruch{n (8+n)+7}{7(7+n) (8+n)}[/mm]
>  
> und da hänge ich ich glaube ich hab huete schon zu viele
> zahlen gesehen und es is spät^^

Hallo,
du weißt doch, was laut Induktionsbehauptung herauskommen muss.

Dein letzter Term ergibt nach Ausmultiplizieren im Zähler
[mm]\bruch{n^2+8n+7}{7(7+n) (8+n)}[/mm]
Im Vergleich mit der Induktionsbehauptung hast du im Nenner einen Faktor zu viel (7+n) und im Zähler auch einen zu großen Term. Also musst du sehen, dass sich auch im Zähler (n+7) ausklammern lässt, damit sich das wegkürzt.
(Und da (n+1) im Zähler übrigbleiben soll, würde ich doch einfach mal schauen, ob eventuell [mm] (n+1)(n+7)=n^2+8n+7 [/mm] gelten könnte.....)
Viele Grüße
Abakus


Bezug
                                
Bezug
vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:27 So 18.05.2008
Autor: Aldiimwald

super auf die Idee bin ich noch nicht gekommen den gesuchten bruch um (7+1) zu erweitern dafür hat mir das Auge gefehlt! vielen Dank!

Bezug
                        
Bezug
vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:23 So 18.05.2008
Autor: SorcererBln


Der Zähler ist [mm] 8n+n^2+7 [/mm] und das ist gerade

(7+n)(n+1),

so dass sich (7+n) schließlich herauskürzt!



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de