www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Induktion" - vollständige Induktion
vollständige Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vollständige Induktion: Hilf Schritt für Schritt
Status: (Frage) beantwortet Status 
Datum: 19:43 Di 16.09.2008
Autor: Feiratos

Aufgabe
Beweisen Sie mittels vollständiger Induktion, dass

[mm] \summe_{k=1}^{n}k^2=\bruch{n(n+1)(2n+1)}{6} [/mm]  n [mm] \in \IN_0 [/mm]

Mein Ansatz:

[mm] k^2=\bruch{n(n+1)(2n+1)}{6} [/mm] ist als eine Aussage A(n) gegeben,
und ich muss jetzt  für alle [mm] n\in \IN_0 [/mm] : [mm] (A(n)\RightarrowA(n+1)) [/mm] zeigen.

für k steht doch für alle natürliche Zahlen von 1...n

für [mm] k=1^2=\bruch{1(1+1)(2+1)}{6}=1 [/mm] stimmt es, also der Induktionsanfang(IA)

Induktionsvoraussetzung(IV) ist, die Formel gilt für n

es folgt der Induktionsschritt(IS)

[mm] =\bruch{n(n+1)(2n+1)}{6}+(n+1) [/mm]

[mm] =\bruch{n(n+1)(2n+1)}{6}+\bruch{6(n+1)}{6} [/mm]

hier hänge ich, und weiß auch nicht ob meine Afangsgedanken richtig sind.
Meine Schwierigkeit hängt daran, die 6 wegzubekommen.
Die beiden Brüche wollte ich jetzt zusammen führen, in etwa so:

[mm] =\bruch{n(n+1)(2n+1)+6(n+1)}{6} [/mm]

dann die Klammern auflösen, die Elemente ordnen und wieder die Klammern so setzen, dass halt das neue Folgeglied mit dabei ist...
habe heut auch ein bissl viel mathe gemacht und sehe vielleicht das Einfache hier nicht :-).

viele Grüße







        
Bezug
vollständige Induktion: Quadrat vergessen
Status: (Antwort) fertig Status 
Datum: 19:46 Di 16.09.2008
Autor: Loddar

Hallo Feiratos!


Das sieht doch schon sehr gut aus. Allerdings hast Du ein Quadrat vergessen.

Denn es muss heißen:
$$= \ [mm] \bruch{n*(n+1)*(2n+1)}{6}+(n+1)^{\red{2}} [/mm] \ = \ [mm] \bruch{n*(n+1)*(2n+1)}{6}+\bruch{6*(n+1)^{\red{2}}}{6}$$ [/mm]
Nun die Brüche zusammenfassen und anschließend $(n+1)_$ ausklammern.


Gruß
Loddar


Bezug
                
Bezug
vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:19 So 21.09.2008
Autor: Feiratos

n+1:

[mm] \summe_{k=1}^{n+1}k^2=(n+1)^2+\summe_{k=1}^{n}k^2 [/mm]

also so:

[mm] (n+1)^2+\bruch{n(n+1)(2n+1)}{6} [/mm]

= [mm] \bruch{(n+1) (6(n+1)+n(2n+1))}{6} [/mm]

[mm] =\bruch{(n+1)(6(n+1)+n(2n+1)}{6} [/mm]

[mm] =\bruch{(n+1)(2n^2+7n+6)}{6} [/mm]

[mm] =\bruch{(n+1)(n+2)(2n+3)}{6} [/mm]  ...?

Bezug
                        
Bezug
vollständige Induktion: Richtig!
Status: (Antwort) fertig Status 
Datum: 12:28 So 21.09.2008
Autor: Loddar

Hallo Feiratos!


[ok] Richtig ...


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de