www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - vollständiger metrischer raum
vollständiger metrischer raum < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vollständiger metrischer raum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:31 Di 24.04.2007
Autor: QuAdRaTwUrZeLcHeN

Aufgabe
Die Aufgabe:
Sei X die Menge der ganzen Zahlen, d(m,n) = |m-n|.
Zeige: (X,d) ist ein vollständig metrischer Raum.

Hallo!  
Ich würde dringend Hilfe gebrachen.

Die Aufgabe:
Sei X die Menge der ganzen Zahlen, d(m,n) = |m-n|.
Zeige: (X,d) ist ein vollständig metrischer Raum.

Soooooo.......................
Also, das es ein metrischer Raum ist hab ich schon bewiesen, dazu muss man ja nur die drei metriaxiome zeigen.
Mein Problem liegt beim "vollständigen" metrischen Raum

Wie zeige ich dass er vollständig ist???

Def: Ein metrischer Raum (X,d) heißt vollständig, wenn jede Cauchyfolge in X einen Grenzwert besitzt.

Wie komm ich da zu meiner Folge, für die ich das zeigen kann??

Bitte helft mir, wär euch echt für jeden Hinweis Dankbar!

___________________________________________________________
Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
www.matheboard.de
(aber bisher noch keine richtige antwort bekommen)


        
Bezug
vollständiger metrischer raum: Antwort
Status: (Antwort) fertig Status 
Datum: 23:03 Di 24.04.2007
Autor: komduck

Nimm eine belibige Cauchyfolge wähle [mm] \varepsilon [/mm] = [mm] \bruch{1}{2} [/mm]
Nun zeige ab einem N ist die Folge konstant.
Folgen die ab einem N konstant sind konverieren immer.

In diesem Raum sind alle Menge offen. Räume in denen alle Mengen
offen sind nennt mach auch diskret. Hier konvergieren nur Folgen
die ab einem N konstant sind.

komduck

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de