www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - volumenberechnung,von x,yEbene
volumenberechnung,von x,yEbene < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

volumenberechnung,von x,yEbene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:52 Fr 03.07.2009
Autor: Samira2

Hallo zusammen,
hab da mal ne Frage also soll das Volumen berechnen zw. der Funktion [mm] f(x,y)=\wurzel[4]{x^2+y^2}, [/mm] stellt die untere grenze da, und der horizontalen Ebene z= 1, ist obere Begrenzung, nun soll ich das Volumen des Rotationskörper berechnen. dann wäre das ja integral von 0 bis 2 pi und von 0 bis 1 sowie von wurzel r bis eins nach dz,dr und dphi integriert, puh langer text, sorry bin neu hier, jetzt zu meiner Frage wie sehe es aus wenn z z.b. 4 wäre? steht dann da nur ne 4 statt der 1, bin mir irgendwie gar nicht mehr so sicher, wäre dankbar für nen Tipp!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
volumenberechnung,von x,yEbene: Antwort
Status: (Antwort) fertig Status 
Datum: 09:05 Sa 04.07.2009
Autor: Al-Chwarizmi


> Hallo zusammen,
>  hab da mal ne Frage also soll das Volumen berechnen zw.
> der Funktion [mm]f(x,y)=\wurzel[4]{x^2+y^2},[/mm] stellt die untere
> grenze da, und der horizontalen Ebene z= 1, ist obere
> Begrenzung, nun soll ich das Volumen des Rotationskörper
> berechnen. dann wäre das ja integral von 0 bis 2 pi und
> von 0 bis 1 sowie von wurzel r bis eins nach dz,dr und dphi
> integriert, puh langer text, sorry bin neu hier, jetzt zu
> meiner Frage wie sehe es aus wenn z z.b. 4 wäre? steht
> dann da nur ne 4 statt der 1, bin mir irgendwie gar nicht
> mehr so sicher, wäre dankbar für nen Tipp!


Hallo Samira,
                 [willkommenmr]

du hast offenbar schon den Radius [mm] r=\sqrt{x^2+y^2} [/mm]
eingeführt. Damit bist du auf dem richtigen
Weg und hast du für das Volumen ein
hundsgewöhnliches Rotationskörper-Volumen-
Integral wie in der Schule:

      $\ [mm] V=\pi*\integral_{z=0}^{z_{max}}r(z)^2\,dz$ [/mm]

Da kannst du dann als Obergrenze [mm] z_{max} [/mm] ein-
setzen, was dein Herz begehrt ...
Weil [mm] z=f(x,y)=\wurzel{r} [/mm] ist, gilt natürlich
[mm] r(z)=z^2 [/mm] .


LG    Al-Chwarizmi



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de