www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - waagerechte Tangente
waagerechte Tangente < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

waagerechte Tangente: Denkanschubser
Status: (Frage) beantwortet Status 
Datum: 21:12 Mo 03.05.2010
Autor: ines09a

Aufgabe
Wo hat der Graph der Funktion f: [mm] f(x)=\bruch{1}{3}x^3+\bruch{1}{2}x^2-6x [/mm] waagerechte Tangenten?

So, entschuldigt die späte Störung, aber ich komme partout nicht weiter... ich habe die erste Ableitung f'(x)= [mm] x^2+x-6 [/mm] gebildet. Muss jetzt diese Ableitung f'(x)=0 setzten, aber ab da fnage ich an zu scheitern. die 6 stört mich.
Denn ich habe nun [mm] x^2+x=6 [/mm] ... ist das soweit richtig?
und wie gehts dann weiter?

Liebe Grüße und danke im Voraus :)


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
waagerechte Tangente: Antwort
Status: (Antwort) fertig Status 
Datum: 21:18 Mo 03.05.2010
Autor: Adamantin


> Wo hat der Graph der Funktion f:
> [mm]f(x)=\bruch{1}{3}x^3+\bruch{1}{2}x^2-6x[/mm] waagerechte
> Tangenten?
>  So, entschuldigt die späte Störung, aber ich komme
> partout nicht weiter... ich habe die erste Ableitung f'(x)=
> [mm]x^2+x-6[/mm] gebildet. Muss jetzt diese Ableitung f'(x)=0
> setzten, aber ab da fnage ich an zu scheitern. die 6 stört
> mich.
>  Denn ich habe nun [mm]x^2+x=6[/mm] ... ist das soweit richtig?
>  und wie gehts dann weiter?
>  
> Liebe Grüße und danke im Voraus :)
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Quadratische Gleichungen löst man für gewöhnlich mit der p-q-Formel oder einer quadratischen Ergänzung, was du beides wissen solltest. Es ist UNMÖGLICH, dass ihr Kurvendiskussionen habt und du nicht weißt, wie man eine quadratische Gleichung löst! Das erschrickt mich gerade so sehr, dass ich nicht weiß, wie ich dir helfen soll, denn ich habe keine Lust ,die Gleichung für die p-q-Formel abzuschreiben, von daher google mal.

Aber allgemein: hast du sowas wie [mm] x^2+2-6, [/mm] dann ergänz doch mal zu [mm] (x+1)^2-1+6. [/mm] Warum? Du hast aus dem ersten Teil eine binomische Formel gemacht, aber die binomische Formel geht nicht auf. Daher musst du das, was du zuviel addierst, wieder abziehen. Im Klartext: [mm] (x+1)^2=x^2+2x+1. [/mm] Würden wir das mit 6 addieren, kommt [mm] x^2+2x+7 [/mm] raus und nicht [mm] x^2+2x+6, [/mm] daher musst du den [mm] b^2-Teil [/mm] der binmoischen Formel wieder rauskürzen. Sowas nennt man Einfügen der Null. Oder du lernst die p-q-Formel auswendig, damit gehts sofort.

Also musst du jetzt lösen: [mm] (x+1)^2+5=0 [/mm]

Bezug
        
Bezug
waagerechte Tangente: p/q-Formel
Status: (Antwort) fertig Status 
Datum: 21:38 Mo 03.05.2010
Autor: Loddar

Hallo Ines!


Siehe mal hier unter MBp/q-Formel ...


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de