www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - welche Mengen bilden Unterräum
welche Mengen bilden Unterräum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

welche Mengen bilden Unterräum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:47 So 12.11.2006
Autor: wonni

Aufgabe
Welche der folgenden Mengen bilden einen Unterraum von [mm] (\IR^{\IR},+,\*)? [/mm]
(a) Die Lipschitz-stetigen Funktionen {f: [mm] \IR \to \IR: \exists [/mm] C>0 [mm] \forall x,y\in \IR: \vmat{f(x)-f(y)} \le [/mm] C [mm] \vmat{x-y}} [/mm]
(b) Die Lipschitz-stetigen Funktionen mit Konstante 1 {f: [mm] \IR \to \IR: \forall x,y\in \IR: \vmat{f(x)-f(y)} \le \vmat{x-y}} [/mm]
(c) Die beschränkten Funktionen.
(d) Die stetigen Funktionen.
(e) Die geraden Funktionen: [mm] \forall [/mm] x [mm] \in \IR [/mm] : f(x)=f(-x).
(f) Die ungeraden Funktionen: [mm] \forall [/mm] x [mm] \in \IR [/mm] : f(x)=-f(-x).

Als ich versuchte dieses beispiel auf die Unterraumaxiome zu testen, ist bei mir völliger Blödsinn herausgekommen... Kann mir denn bitte jemand helfen???? Danke :))
(PS: Habe die Betragszeichen nicht gefunden und deshalb die Determinanten Striche angewandt, hoffe man kann es lesen!)
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
welche Mengen bilden Unterräum: Antwort
Status: (Antwort) fertig Status 
Datum: 12:17 Mo 13.11.2006
Autor: angela.h.b.


> Welche der folgenden Mengen bilden einen Unterraum von
> [mm](\IR^{\IR},+,\*)?[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


>  (a) Die Lipschitz-stetigen Funktionen {f: [mm]\IR \to \IR: \exists[/mm]
> C>0 [mm]\forall x,y\in \IR: \vmat{f(x)-f(y)} \le[/mm] C [mm]\vmat{x-y}}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


>  (b) Die Lipschitz-stetigen Funktionen mit Konstante 1 {f:
> [mm]\IR \to \IR: \forall x,y\in \IR: \vmat{f(x)-f(y)} \le \vmat{x-y}}[/mm]
>  
> (c) Die beschränkten Funktionen.
>  (d) Die stetigen Funktionen.
>  (e) Die geraden Funktionen: [mm]\forall[/mm] x [mm]\in \IR[/mm] :
> f(x)=f(-x).
>  (f) Die ungeraden Funktionen: [mm]\forall[/mm] x [mm]\in \IR[/mm] :
> f(x)=-f(-x).
>  Als ich versuchte dieses beispiel auf die Unterraumaxiome
> zu testen, ist bei mir völliger Blödsinn herausgekommen...

Hallo,

an welcher der 6 Aufgaben hast Du Dich denn versucht?
Und was hast Du getan?
Es wäre hilfreich für die Hilfeleistung, wenn man das hier lesen könnte.

So nur allgemeine Hinweise:

In der Vorlesung wurde ganz sicher besprochen, daß [mm] (\IR^{\IR},+,\*) [/mm] ein Vektorraum ist.

Du mußt daher ja "nur noch" zeigen, daß die zu betrachtenden Mengen nichtleer sind und abgeschlossen gegenüber den linearen Operationen, daß also jeweils f+g und [mm] \alpha [/mm] f [mm] (\alpha \in \IR) [/mm] auch drinliegen. Oder eben nicht.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de