www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - wendestelle
wendestelle < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

wendestelle: kubische formel
Status: (Frage) beantwortet Status 
Datum: 22:36 Mi 25.01.2006
Autor: deluxeskywalker

Aufgabe
[mm] ae^{3(x-1)}-2ae^{2(x-1)}+9ae^{x-1}+e^{2(x-1)}+6e^{x-1}+1=0 [/mm]
substitution: [mm] z:=e^{x-1} [/mm]
[mm] az^{3}+(1-2a)z^{2}+(6+9a)z+1=0 [/mm]
anwenden der kubischen formel: 1. gleichung durch a dividieren :
[mm] z^{3}+(\frac{1}{a}-2)z^{2}+(\frac{6}{a}+9)z+\frac{1}{a}=0 [/mm]

hi leute,
also ich hab diese gleichung und ich muss versuchen die zu lösen. ich hab dann eine substitution durchgeführt.nun war es ein polynom des 3.grades.
soweit ich weiß kann man es mit der kubischen formel lösen!?ich muss dann diese gleichung mit a dividieren und dann [mm] y=z+\frac{b}{3a} [/mm] einsetzen. meine problem is es das b, soll den ursprünglichen wert (also bei mir wäre es b=1-2a) oder den nach a dividierten wert (also [mm] b=\frac{1}{a}-2 [/mm] ) nehmen?achja diese gleichung is die 2. ableitung meiner funktion und ich muss beweisen dass diese gleichung ungleich Null ist, denn bei meinem graphen ist keine wendestelle zu erkennen.danke für eure hilfe!
gruß deluxeskywalker

        
Bezug
wendestelle: Antwort
Status: (Antwort) fertig Status 
Datum: 00:10 Do 26.01.2006
Autor: leduart

Hallo
Ein Polynom 3. Grades hat immer mindestens eine Nullstelle.Wenn also deine Fkt keine Nullstelle haben soll, müssen alle z negativ sein, wegen [mm] z=e^{x-1}>0 [/mm] wenn du irgend ne Einschränkung für a hast, ist vielleich leichter zu zeigen, dass z0 <0 ist. Gleichungen 3. Grades wirklich zu lösen gehört ins 19. Jahrhundert oder den Computer!
aber Wenn du unbedingt willst : das ursprüngliche b in dder Substitutions formel also  y=z+(1/a-2)
Gruss leduart


Bezug
                
Bezug
wendestelle: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 00:18 Do 26.01.2006
Autor: deluxeskywalker

hi,
ja es gibt eine einschränkung für a und zwar: a>0!
ich hab scho gemerkt, dass das rechnen mit der kubischen formel einfach zu viel ist! wie kann ich nun beweisen dass meine funktion keine wendestelle hat?
lg deluxeskywalker

Bezug
                        
Bezug
wendestelle: Antwort
Status: (Antwort) fertig Status 
Datum: 01:10 Do 26.01.2006
Autor: leduart

Hallo skywalker
du musst deim Polynom diskutieren:
$f(z)= [mm] z^{3}+(\frac{1}{a}-2)z^{2}+(\frac{6}{a}+9)z+\frac{1}{a}$ [/mm]
f(0)>0, f(1)>0 zwischen 0 und 1 ist [mm] z>z^{2} [/mm] also [mm] 9z>2z^{2} [/mm] also f(z)>0 jetzt bis 2 und weiter, immer f(z)>0 für große z überwiegt [mm] z^{3} [/mm] immer das einzig negative [mm] 2z^{2} [/mm] also ist f(z)>0 für z>0 fertig. das musst du nur noch genauer machen
Gruss leduart


Bezug
                                
Bezug
wendestelle: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 01:36 Do 26.01.2006
Autor: deluxeskywalker

hi leduart,
dein weg könnte zum zeil führen,aba könntest du eventuell deine formulieren bisschen anders wiedergeben,weil ich steh grad auf der kippe,deswegen könnte eventuell eine andere formulieren das glühlämpchen zum glühen bringen, bissl metaphorisch :-)
danke für dein bemühen, sky

Bezug
                                        
Bezug
wendestelle: eigene Arbeit
Status: (Antwort) fertig Status 
Datum: 13:27 Do 26.01.2006
Autor: leduart

Hallo
ein bisel was solltest du erst mal selber tun, also mindesten f(0), f(1) f(2) und vielleicht noch f(1,5) ausrechnen, und dann genau sagen, was du an meinem post nicht verstehst!
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de