www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - werte gesucht
werte gesucht < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

werte gesucht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:37 Mi 02.03.2011
Autor: Foszwoelf

Aufgabe
f(x)= [mm] (ax^2)/(ax+b) [/mm]

bei welchen x werten hat der graph waagrechte tangenten??

erste Ableitung:

f´(x)= [mm] 2ax(ax+b)-(ax^2)(a) [/mm]  /  [mm] (ax+b)^2 [/mm]

f´x=  [mm] 2a^2x^2+2axb [/mm] - [mm] a^2 x^2 [/mm]   / [mm] (ax+b)^2 [/mm]

stimmt das soweit ??

        
Bezug
werte gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 14:47 Mi 02.03.2011
Autor: kamaleonti

Hi,
> f(x)= [mm](ax^2)/(ax+b)[/mm]
>  
> bei welchen x werten hat der graph waagrechte tangenten??
>  erste Ableitung:
>  
> f´(x)= $ [mm] 2ax(ax+b)-(ax^2)(a) [/mm] $  /  $ [mm] (ax+b)^2 [/mm] $

Ich nehme an, du meinst [mm] f'(x)=\frac{2ax(ax+b)-(ax^2)(a)}{(ax+b)^2} [/mm]

>  
> f´x=  [mm]2a^2x^2+2axb[/mm] - [mm]a^2 x^2[/mm]   / [mm](ax+b)^2[/mm]
>  
> stimmt das soweit ??

Du kannst noch zusammenfassen zu
[mm] \qquad \ldots=\frac{a^2x^2+2abx}{(ax+b)^2}=\frac{ax(ax+2b)}{(ax+b)^2} [/mm]

Nun musst du berechnen, wann die 1. Ableitung 0 ist.

Gruß


Bezug
                
Bezug
werte gesucht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:53 Mi 02.03.2011
Autor: Foszwoelf

$ [mm] \qquad \ldots=\frac{a^2x^2+2abx}{(ax+b)^2}=\frac{ax(ax+2b)}{(ax+b)^2} [/mm] $

ah genau und das setze ich jetzt =0 ne?

Bezug
                        
Bezug
werte gesucht: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:56 Mi 02.03.2011
Autor: Foszwoelf

das ausrechne bekomme ich nicht hin

Bezug
                        
Bezug
werte gesucht: Zähler betrachten
Status: (Antwort) fertig Status 
Datum: 15:05 Mi 02.03.2011
Autor: Roadrunner

Hallo Foszwoelf!


> [mm]\qquad \ldots=\frac{a^2x^2+2abx}{(ax+b)^2}=\frac{ax(ax+2b)}{(ax+b)^2}[/mm]

[ok]


> ah genau und das setze ich jetzt =0 ne?

[ok] Und ein Bruch ist genau dann gleich Null, wenn der Zähler Null ist.

Es gilt also zu lösen:

$ax*(ax+2b) \ = \ 0$

Nun gilt: ein Produkt ist gleich Null, wenn mind. einer der Faktoren Null ist.


Gruß vom
Roadrunner


Bezug
                                
Bezug
werte gesucht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:32 Mi 02.03.2011
Autor: Foszwoelf

also ax=0   also x=a/0 = 0

0=ax+2b    x= 2b/a



Bezug
                                        
Bezug
werte gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 15:38 Mi 02.03.2011
Autor: fred97


> also ax=0   also x=a/0 = 0

Aua !!!  Du teilst durch = 0 !   Richtig: x=0/a=0,

wobei hier natürlich a [mm] \ne [/mm] 0 sein muß !

>  
> 0=ax+2b    x= 2b/a

Nochmal auuaa ! Richtig:  x= -2b/a

Wie sieht denn Deine Funktion aus , wenn a=0 ist ? Und wo hat sie dann waagrechte Tangenten ?

FRED

FRED

>  
>  


Bezug
                                                
Bezug
werte gesucht: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:41 Mi 02.03.2011
Autor: Foszwoelf

okay aber woher kommt das minus vor der zweiten lösung??

Bezug
                                                        
Bezug
werte gesucht: Schulmathematik 6. Klasse
Status: (Antwort) fertig Status 
Datum: 15:43 Mi 02.03.2011
Autor: Roadrunner

Hallo Foszwoelf!


> okay aber woher kommt das minus vor der zweiten lösung??

Das ist doch jetzt nicht Dein Ernst? Wie lautet der erste Schritt beim Umstellen der Gleichung $ax+2b \ = \ 0$ .


Gruß vom
Roadrunner

Bezug
                                                                
Bezug
werte gesucht: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:45 Mi 02.03.2011
Autor: Foszwoelf

sorry is klar habe es übersehen danke für die hilfe

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de