www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - windschiefe Geraden
windschiefe Geraden < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

windschiefe Geraden: Frage
Status: (Frage) beantwortet Status 
Datum: 23:21 So 05.06.2005
Autor: b.BeautY

Ich hoffe mir kann jemand erklären wie man die Punkte bestimmen kann die sich bei windschiefen Geraden am nächsten liegen, für deren Abstand voneinander also gilt:

[mm] d=(\vec{p}- \vec{q})* \bruch{\vec{u}x\vec{v}}{|\vec{u}x\vec{v}|} [/mm]

p und q sind die Ortsvektoren, u und v linear unabhängige Richtungsvektoren zweier Geraden.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
windschiefe Geraden: Tipps
Status: (Antwort) fertig Status 
Datum: 08:37 Mo 06.06.2005
Autor: informix

Hallo b.BeautY,
[willkommenmr]
Freust du dich über eine nette Anrede? Wir auch!

> Ich hoffe mir kann jemand erklären wie man die Punkte
> bestimmen kann die sich bei windschiefen Geraden am
> nächsten liegen, für deren Abstand voneinander also gilt:
>  
> [mm]d=(\vec{p}- \vec{q})* \bruch{\vec{u}\*\vec{v}}{|\vec{u}\*\vec{v}|}[/mm]
>  
> p und q sind die Ortsvektoren, u und v linear unabhängige
> Richtungsvektoren zweier Geraden.
>  

Man stellt eine Ebene E auf, die parallel zu einer der Geraden (h) verläuft und die andere Gerade (g) enthält.
Dann hat jeder Punkt B auf h den gesuchten Abstand von der Ebene E. Der Normalenvektor von E ist zugleich der Vektor, der in Richtung des Abstandes zeigt, d.h. er steht auf beiden Geraden senkrecht

Um nun die Punkte auf beiden Geraden zu finden, die diesen kürzesten Abstand repräsentieren, verfährt man so:
Die Ebene E', die g enthält und in Richtung des Abstandes zeigt, schneidet die Gerade h im Punkt [mm] P_2. [/mm]
Den zugehörigen Punkt [mm] P_1 [/mm] erhält man als Schnittpunkt der Lotgeraden $l: [mm] \vec{x}=\vec{p_1} [/mm] + [mm] r\vec{n}_E$ [/mm] mit der Gerade g.

siehe auch: MBAbstandsberechnungen in R3, MBNormalenform in der MBMatheBank

Kommst du jetzt alleine weiter?


Bezug
                
Bezug
windschiefe Geraden: Korrektur
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:56 Fr 04.01.2008
Autor: hwj

Die Gleichung für die Lotgerade l muss heissen
l: x = p2 + r*nE
Man erhält aber p1 schon aus dem LGS des Schnitts von E' mit h (ausprobieren).

Bezug
                
Bezug
windschiefe Geraden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:39 Fr 10.06.2005
Autor: b.BeautY

Guten Tag,
habs verstanden, vielen Dank Informix.
Ich hab in der Datenbak auch nach Beiträgen zu dem Thema gesucht, aber nich das richtige gefunden.

Gruß beauty

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de