x^2+y^2kongruent t mod p < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:30 Fr 24.10.2008 | Autor: | dryvonne |
Aufgabe | Sei p eine ungerade Primzahl; sei [mm] t \not \equiv 0 (mod p) [/mm]. Zeigen Sie, dass es x,y gibt, so dass [mm] x^2+y^2 \equiv t (mod p). [/mm] |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo!
Ich bin ganz neu hier, bis jetzt habe ich mich nur umgeschaut. Ich finde es super, dass es so eine schöne Möglichkeit gibt, endlich, um nicht so alleine am Schreibtisch zu sein, falls man einfach nicht weiter kommt.
Nun zu meiner Frage:
Ich möchte mich die nächste Zeit viel mehr mit der Zahlentheorie beschäftigen und habe viele Aufgaben vor mir. Bei dieser Aufgabe weiss ich einfach nicht wie ich anfangen sollte. Ich würde mich über Tipps freuen bzw. welche Sätze bringen mich weiter? Ich möchte keine Lösung! Zu der Lösung würde ich gerne versuchen alleine zu kommen, irgendwann?! Wie gehe ich am besten mit dieser Aufgabe um?
Ich freue mich schon auf eure Hilfe, alleine komme ich einfach nicht weiter, kann noch so viele Bücher durchblättern.
Gruss Yvonne
Ich habe zwar Befehl für Äquivalenz benutzt aber es geht natürlich um Kongruenz.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:51 Fr 24.10.2008 | Autor: | abakus |
> Sei p eine ungerade Primzahl; sei [mm]t \not \equiv 0 (mod p) [/mm].
> Zeigen Sie, dass es x,y gibt, so dass [mm]x^2+y^2 \equiv t (mod p).[/mm]
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
> Hallo!
> Ich bin ganz neu hier, bis jetzt habe ich mich nur
> umgeschaut. Ich finde es super, dass es so eine schöne
> Möglichkeit gibt, endlich, um nicht so alleine am
> Schreibtisch zu sein, falls man einfach nicht weiter
> kommt.
>
> Nun zu meiner Frage:
> Ich möchte mich die nächste Zeit viel mehr mit der
> Zahlentheorie beschäftigen und habe viele Aufgaben vor mir.
> Bei dieser Aufgabe weiss ich einfach nicht wie ich anfangen
> sollte. Ich würde mich über Tipps freuen bzw. welche Sätze
> bringen mich weiter? Ich möchte keine Lösung! Zu der Lösung
> würde ich gerne versuchen alleine zu kommen, irgendwann?!
> Wie gehe ich am besten mit dieser Aufgabe um?
> Ich freue mich schon auf eure Hilfe, alleine komme ich
> einfach nicht weiter, kann noch so viele Bücher
> durchblättern.
> Gruss Yvonne
> Ich habe zwar Befehl für Äquivalenz benutzt aber es geht
> natürlich um Kongruenz.
Halo, ich habe keine Lösung, nur ein paar Gedanken zur Aufgabe.
Da
[mm] p-1\equiv [/mm] -1 (p)
[mm] p-2\equiv [/mm] -2 (p)
[mm] p-2\equiv [/mm] -3 (p)
usw gilt, folgt daraus
[mm] (p-a)^2 \equiv a^2 [/mm] (p).
Da bedeutet, jeder auftretende Rest bei Quadratzahlen kommt zweimal vor (und damit kommt mindestens die Hälfte der Reste nicht vor, wenn andere doppelt vorkommen).
Wenn nun laut Aufgabe JEDER Rest t mod p vorkommen soll, müssten sich also alle bei [mm] a^2 [/mm] nicht vorkommenden Reste als Summe zweier vorkommender quadratiscer Reste erzeugen lassen.
Gruß Abakus
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:45 Sa 25.10.2008 | Autor: | dryvonne |
danke für die ersten tipps, bis [mm] (p-a)^2 \equiv a^2 (mod p) [/mm] konnte ich gut nachvollziehen, alles andere noch nicht wirklich verstanden.
gruss y.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:17 Sa 25.10.2008 | Autor: | PeterB |
Ich kenne eine Lösung, und gebe mal ein paar Tipps:
1) Wenn man im Aufgaben-Text [mm] $x^2+y^2$ [/mm] durch [mm] $x^2-y^2$ [/mm] ersetzt, dann ist die Aufgabe viel einfacher!
2) Für einige Primzahlen kann man die "+" Aufgabe direkt auf die "-" Aufgabe zurückführen.
3) Für die anderen Primzahlen geht das auch, aber man braucht (ich weiß: nicht so überraschend) ein paar Mittel aus der elementaren/algebraischen Zahlentheorie.
Ich werde gerne in einigen Punkten konkreter, aber du wolltest ja nur Hinweise, keine Lösung.
Gruß
Peter
|
|
|
|