www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - x^x für negative Werte
x^x für negative Werte < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

x^x für negative Werte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:26 So 04.06.2006
Autor: mateusz

Hallo. Ich bin neulich eher zufällig auf die Funktion [mm] x^x [/mm] gestoßen. Für
x ∈ [mm] \IR+ [/mm] ist die Funktion einfach zu bestimmen. Auch wenn sie nicht
für x ∈ [mm] \IR- [/mm] definiert ist (aufgrund der Schreibweise [mm] e^{x\cdot{}\ln(x)}, [/mm] die für die Ableitung benutzt wird), gibt es doch einige bestimmbare Werte (z.B.   x= -1 ⇒ y=-1). Meine Überlegung war jetzt eben diese Werte durch eine (oder zwei, wegen der positiven Lösungen(TR)) Hüllkurve(n) zu beschreiben. Es ist klar, dass für -x [mm] \to \infty [/mm] die Hüllkurve die x-Achse als Asyptote hat. Nur irgendwie brauche ich Starthilfe bei der Funktionsbestimmung.

Danke im Vorraus

Mateusz

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
x^x für negative Werte: Antwort
Status: (Antwort) fertig Status 
Datum: 01:01 Mo 05.06.2006
Autor: Martin243

Hallo,

das ist ja gar nicht so schwer wie es auf den ersten Blcik aussehen mag.
Ich wüsste nicht, warum man die Funktion nicht für irrationale Zahlen nicht definieren dürfte.
Das Argument mit der Ableitung bedeutet nur, dass die Funktion nicht differenzierbar ist, zurecht, denn sie ist ziemlich zerfurcht.
Aber wenn man sie sich mal genauer ansieht, dann ist sie nur an abzählbar vielen Stellen nicht definiert, denn:

Irrationale Zahlen sind kein Problem, nur bei rationalen Zahlen taucht ab und zu ein Problem auf, denn dann gilt für x = [mm] \bruch{-m}{n}, m,n\in\IN: [/mm]
[mm] x^x [/mm] = [mm] (\bruch{-m}{n})^\bruch{-m}{n} [/mm] = [mm] \wurzel[n]{\bruch{1}{(\bruch{-m}{n})^m}} [/mm]

Ist nun zufällig n gerade und m ungerade, dann versuchen wir, eine Wurzel geraden Grades aus einer negativen Zahl zu ziehen, was ja in [mm] \IR [/mm] nicht geht.

In allen anderen Fällen können wir getrost schreiben:
[mm] x^x [/mm] = [mm] -(-x)^x [/mm]

Diese Beziehung gilt dann für alle Fälle außer für rationale [mm] x=\bruch{-m}{n} [/mm] mit m ungerade und n gerade.

Also ergibt [mm] -(-x)^x [/mm] eine schöne Hüllkurve.


Gruß
Martin


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de