www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - zeige komplexe basis
zeige komplexe basis < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

zeige komplexe basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:06 Mo 14.01.2013
Autor: elmanuel

Aufgabe
Zeige: Die Vektoren (i,1,0), (0,1,i), (0,i,1) bilden eine Basis des [mm] \IC^3 [/mm]
(Drücke [mm] y_1,y_2_y_3 [/mm] aus)

Hallo liebe Gemeinde!

also ich hab mal versucht das als Matrix aufzuschreiben

(ganz rechts soll der Lösungsvektor sein.

[mm] \pmat{ i & 1 & 0 & y_1 \\ 0 & 1 & i & y_2 \\ 0 & i & 1 & y_3 } [/mm]

in Zeilenstufenform dann:

[mm] \pmat{ i & 1 & 0 & y_1 \\ 0 & i & -1 & y_2*i \\ 0 & 0 & 2 & y_3-y_2*i } [/mm]

so ... jetzt weis ich nicht weiter...

soll ich jetzt anhand dieser matrix [mm] y_1, y_2, y_3 [/mm] ausdrücken?



        
Bezug
zeige komplexe basis: Antwort
Status: (Antwort) fertig Status 
Datum: 12:59 Mo 14.01.2013
Autor: fred97


> Zeige: Die Vektoren (i,1,0), (0,1,i), (0,i,1) bilden eine
> Basis des [mm]\IC^3[/mm]


>  (Drücke [mm]y_1,y_2_y_3[/mm] aus)

Was ist denn damit gemeint ?


>  Hallo liebe Gemeinde!
>  
> also ich hab mal versucht das als Matrix aufzuschreiben
>  
> (ganz rechts soll der Lösungsvektor sein.
>  
> [mm]\pmat{ i & 1 & 0 & y_1 \\ 0 & 1 & i & y_2 \\ 0 & i & 1 & y_3 }[/mm]
>  
> in Zeilenstufenform dann:
>  
> [mm]\pmat{ i & 1 & 0 & y_1 \\ 0 & i & -1 & y_2*i \\ 0 & 0 & 2 & y_3-y_2*i }[/mm]
>  
> so ... jetzt weis ich nicht weiter...
>  
> soll ich jetzt anhand dieser matrix [mm]y_1, y_2, y_3[/mm]
> ausdrücken?

Was ist denn damit gemeint ?


>  

>

Diees Matrix
  
[mm]\pmat{ i & 1 & 0\\ 0 & i & -1 \\ 0 & 0 & 2 }[/mm]

hat den Rang 3. Damit liegt lin. Unabhängigkeit vor.

FRED

Bezug
                
Bezug
zeige komplexe basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:07 Mo 14.01.2013
Autor: elmanuel


> > Zeige: Die Vektoren (i,1,0), (0,1,i), (0,i,1) bilden eine
> > Basis des [mm]\IC^3[/mm]
>  
>
> >  (Drücke [mm]y_1,y_2_y_3[/mm] aus)

>  
> Was ist denn damit gemeint ?

ich denke mal das wir allgemein [mm] y_1, y_2 [/mm] und [mm] y_3 [/mm] als Linearkombination der Vektoren ausdrücken sollen um zu sehen das hier ein erzeugendensystem vorliegt...

> hat den Rang 3. Damit liegt lin. Unabhängigkeit vor.

richtig, aber für eine basis brauche ich doch lin. unabhängigkeit und auch die voraussetzung dass ein erzeugendensystem vorliegt oder?

Bezug
                        
Bezug
zeige komplexe basis: Antwort
Status: (Antwort) fertig Status 
Datum: 10:04 Di 15.01.2013
Autor: schachuzipus

Hallo elmanuel,


> > > Zeige: Die Vektoren (i,1,0), (0,1,i), (0,i,1) bilden eine
> > > Basis des [mm]\IC^3[/mm]
>  >  
> >
> > >  (Drücke [mm]y_1,y_2_y_3[/mm] aus)

>  >  
> > Was ist denn damit gemeint ?
>  
> ich denke mal das wir allgemein [mm]y_1, y_2[/mm] und [mm]y_3[/mm] als
> Linearkombination der Vektoren ausdrücken sollen um zu
> sehen das hier ein erzeugendensystem vorliegt...
>  
> > hat den Rang 3. Damit liegt lin. Unabhängigkeit vor.
>  
> richtig, aber für eine basis brauche ich doch lin.
> unabhängigkeit und auch die voraussetzung dass ein
> erzeugendensystem vorliegt oder?

Ja, aber es wird sich herausstellen, dass [mm]\IC^3[/mm] als [mm]\IC[/mm]-VR Dimension 3 hat.

Stelle doch dazu diesen bel. Vektor [mm]\vektor{y_1\\ y_2\\ y_3}\in\IC^3[/mm] (also [mm]y_i\in\IC[/mm]) als LK der drei gegebenen Vektoren dar.

Zunächst kannst du schreiben [mm]\vektor{y_1\\ y_2\\ y_3}=\vektor{a_1+b_1i\\ a_2+b_2i\\ a_3+b_3i}[/mm] mit [mm]a_i,b_i\in\IR[/mm]

Dann setze mal die LK an und zeige, dass sich das (komplex) linear kombinieren lässt aus den Vektoren [mm]\vektor{i\\ 1\\ 0},\vektor{0\\ 1\\ i},\vektor{0\\ i\\ 1}[/mm] ...


Gruß

schachuzipus


Bezug
                                
Bezug
zeige komplexe basis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:07 Di 15.01.2013
Autor: elmanuel

ja so gehts, danke schachuzipus!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de