www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - zeigen, dass abb. linear ist
zeigen, dass abb. linear ist < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

zeigen, dass abb. linear ist: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:38 Mo 25.01.2010
Autor: meep

Aufgabe
1. [mm] (x_1,x_2) [/mm] -> [mm] (1+x_1 [/mm] , [mm] x_2) [/mm]
2. [mm] (x_1,x_2) [/mm] -> [mm] (x_2, x_1) [/mm]

hi,

ich soll zeigen ob die abb. in der aufgabe linear sind.
die definition ist mir bekannt.
die homogenität bekomm ich hin, scheitern tu ich bei der additivität.

zu 1:

[mm] (ax_1,ax_2) [/mm] -> [mm] (1+ax_1 [/mm] , [mm] ax_2) \not= [/mm] a * [mm] (1+x_1 [/mm] , [mm] x_2) [/mm]

das sollte stimmen. die funktion ist also schonmal nicht homogen.

nun weiß ich aber nicht wie ich die additivität zeigen soll. da bräcuhte ich hilfe.


mfg

meep





        
Bezug
zeigen, dass abb. linear ist: Antwort
Status: (Antwort) fertig Status 
Datum: 09:56 Mo 25.01.2010
Autor: fred97


> 1. [mm](x_1,x_2)[/mm] -> [mm](1+x_1[/mm] , [mm]x_2)[/mm]
>  2. [mm](x_1,x_2)[/mm] -> [mm](x_2, x_1)[/mm]

>  hi,
>  
> ich soll zeigen ob die abb. in der aufgabe linear sind.
>  die definition ist mir bekannt.
>  die homogenität bekomm ich hin, scheitern tu ich bei der
> additivität.
>  
> zu 1:
>  
> [mm](ax_1,ax_2)[/mm] -> [mm](1+ax_1[/mm] , [mm]ax_2) \not=[/mm] a * [mm](1+x_1[/mm] , [mm]x_2)[/mm]
>  
> das sollte stimmen. die funktion ist also schonmal nicht
> homogen.
>  
> nun weiß ich aber nicht wie ich die additivität zeigen
> soll. da bräcuhte ich hilfe.

Um die Additivität der 1. Abb. mußt Du Dich nicht mehr kümmern, denn sue ist nicht linear


Nun gehe mal

              2. $ [mm] (x_1,x_2) [/mm] $ -> $ [mm] (x_2, x_1) [/mm] $

an


FRED


>  
>
> mfg
>  
> meep
>  
>
>
>  


Bezug
                
Bezug
zeigen, dass abb. linear ist: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:10 Mo 25.01.2010
Autor: meep

zu 1:

ja ist nicht linear, da die homogenität ja verletzt ist.

zu 2:

ich weiß einfach nicht wie ich die definition der additivität anwenden soll.

es heißt ja: f(x+y) = f(x) + f(y)

wäre es dann so ?

[mm] (x_1+y_1, x_2+y_2) [/mm] -> ( [mm] x_2+y_2, x_1+y_1) [/mm] = [mm] (x_2,x_1) [/mm] + [mm] (y_2,y_1) [/mm]

= [mm] f(x_1,x_2) [/mm] + [mm] f(y_1,y_2) [/mm] = f(x) + f(y)

und die homogenität wäre dann:

[mm] f(ax_1,ax_2) [/mm] = [mm] (ax_2,ax_1) [/mm] = a * [mm] (x_2,x_1) [/mm] = [mm] a*f(x_1,x_2) [/mm]

also laut meiner rechnung wäre sie dann linear.

grüße

meep







Bezug
                        
Bezug
zeigen, dass abb. linear ist: Antwort
Status: (Antwort) fertig Status 
Datum: 10:11 Mo 25.01.2010
Autor: fred97


> zu 1:
>  
> ja ist nicht linear, da die homogenität ja verletzt ist.
>  
> zu 2:
>  
> ich weiß einfach nicht wie ich die definition der
> additivität anwenden soll.
>  
> es heißt ja: f(x+y) = f(x) + f(y)
>  
> wäre es dann so ?
>
> [mm](x_1+y_1, x_2+y_2)[/mm] -> ( [mm]x_2+y_2, x_1+y_1)[/mm] = [mm](x_2,x_1)[/mm] +
> [mm](y_2,y_1)[/mm]
>
> = [mm]f(x_1,x_2)[/mm] + [mm]f(y_1,y_2)[/mm] = f(x) + f(y)
>
> und die homogenität wäre dann:
>
> [mm]f(ax_1,ax_2)[/mm] = [mm](ax_2,ax_1)[/mm] = a * [mm](x_2,x_1)[/mm] = [mm]a*f(x_1,x_2)[/mm]
>  
> also laut meiner rechnung wäre sie dann linear.
>  
> grüße
>  
> meep


Alles richtig !

FRED


>  
>
>
>
>
>  


Bezug
                                
Bezug
zeigen, dass abb. linear ist: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:13 Mo 25.01.2010
Autor: meep

dann bin ich ja beruhigt, lineare algebra ist teils so verwirrend.

danke fürs drüberschauen fred.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de