www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - zentraler GWS, Anwendung
zentraler GWS, Anwendung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

zentraler GWS, Anwendung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:12 Sa 12.01.2013
Autor: recnamoryp

Aufgabe
"Ein Meinungsforschungsinstitut führt eine repräsentative Umfrage durch, um den Stim-
menanteil p [mm] \in [/mm] (0, 1) für eine Partei A zu prognostizieren. Der Stichprobenumfang soll
so gewählt werden, dass mit einer Wahrscheinlichkeit von mindestens 0.95 der zufällige
Stimmenanteil in der Stichprobe um höchstens 2 Prozentpunkte vom wahren Stimmen-
anteil p abweicht. Bestimmen Sie ein solches n mit Hilfe des zentralen Grenzwertsatzes."

Hallo,

ich bräuchte Hilfe bei obiger Aufgabe:

Ich weiß, dass die entsprechende Zufallsgröße [mm] X_n [/mm] ~ Bi(n,p) ist. Erwartungswert [mm] \mu [/mm] = n*p und Varianz [mm] \sigma^2 [/mm] = n*p*(1-p) kenne ich entsprechend auch. Und nun dachte ich verwende ich einfach

[mm] P(X_n \le [/mm] t) [mm] \approx \phi(\bruch{t-n*\mu}{\wurzel{n*\sigma^2}}) \ge [/mm] 0.95

und bestimme mittels des 0.95-Quantils z_(0.95) = 1.645 der Normalverteilung ein n. Doch irgendwie liefert mir das kein sinnvolles Ergebnis.

Was ich also bisher versucht habe ist folgendes:

[mm] P(X_n \le [/mm] 0.02) [mm] \approx \phi(\bruch{0.02-n^2*p}{\wurzel{n^2*p*(1-p)}}) \ge [/mm] 0.95

[mm] \Rightarrow \bruch{0.02-n^2*p}{\wurzel{n^2*p*(1-p)}} \ge [/mm] 1.645

Das Umzustellen führt irgendwie auf eine quadratische Gleichung und das ist ja sicher nicht sinnvoll.

Kann mir jemand helfen?

Vielen Dank im Voraus! :)


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
zentraler GWS, Anwendung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:14 Sa 12.01.2013
Autor: Fry

Hey,

in deiner Antwort stecken einige gute Ansätze. Die Umsetzung der Aussage aus dem Text stimmt aber nicht so. Die Modellierung fehlt bei dir auch.

Könntest es z.B. so machen
[mm] $X_i:= [/mm] 1$, i-te befragte Person würde für Partei stimmen
$=0$, i-te befragte Person stimmt nicht für Partei
[mm] ($1\le i\le [/mm] n$)
[mm] X_i [/mm] ~B(1,p) und [mm] $(X_i)_i$ [/mm] sind unabhängig.
[mm] $S_n:=\sum_{i=1}^{n}X_i$ [/mm] Anzahl der Person in der Stichprobe, die für Partei A stimmen. Enstprechend obigen Vorauss. gilt [mm] S_n~B(n,p) [/mm]
[mm] $\frac{1}{n}S_n$ [/mm] = Anteil der Personen an der Gesamtheit, die für A stimmen würden.

Laut Text soll nun [mm] $P(|\frac{1}{n}S_n-p|\le 0,02)\ge [/mm] 0,95 für alle [mm] $p\in[0,1]$ [/mm] gelten.

Dann müsste entsprechend des ZGWS [mm] $2*\Phi\left(\frac{0,02\sqrt{n}}{\sqrt{p(1-p)}}\right)-1\ge [/mm] 0,95$$ gelten.

Jetzt kannst du wegen der Monotonie von [mm] $\Phi$, [/mm] wie du es ja auch gemacht hast, entsprechende Schlußfolgerungen ziehen. Dann nach n auflösen..

Bedenke, dass man das n dann so wählen muss, dass die Aussage für ALLE p gelten muss.

Viele Grüße
Fry




Bezug
                
Bezug
zentraler GWS, Anwendung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:43 Sa 12.01.2013
Autor: Fry

Also [mm] $n\ge [/mm] 2401$...


Bezug
        
Bezug
zentraler GWS, Anwendung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:39 Sa 12.01.2013
Autor: recnamoryp

Vielen Dank, jetzt hab ichs kapiert. ^-^

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de